Modern NMR Methods in Phytochemical Studies

  • Nikolaus H. Fischer
  • David Vargas
  • Marios Menelaou
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 25)


The last two decades have seen major new developments in the application of nuclear magnetic resonance (NMR) techniques applied toward structural organic chemistry and biochemistry problems in general, and structural as well as biosynthetic studies of natural products, in particular. The development of superconducting magnets together with the application of pulse techniques and Fourier transformations by faster and more powerful computers have dramatically increased the versatility of NMR analysis.1–7


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Hairy Root Culture Nuclear Magnetic Resonance Spectroscopy PHYTOCHEMICAL Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SILVERSTEIN, R.M., BASSLER, G.C., MORRILL, T.C. 1981. Spectrometric Identification of Organic Compounds. 4th edition. John Wiley & Sons, New York, 442 pp.Google Scholar
  2. 2.
    YODER, C.H., SCHAEFFER, C.D. 1987. Introduction to Multinuclear NMR: Theory and Application. Benjamin-Cummings, Menlo Park, 335 pp.Google Scholar
  3. 3.
    DEROME, A.E. 1987. Modern NMR Techniques for Chemistry Research. Pergamon Press, Oxford, 288 pp..Google Scholar
  4. 4.
    LEVY, G.C., LICHTER, R.L., NELSON, G.L. 1980. Carbon-13 Nuclear Magnetic Resonance Spectroscopy, 2nd edit. Wiley-Inter-science, New York, 338 pp.Google Scholar
  5. 5.
    BREITMAIER, E., VOELTER, W. 1987. Carbon-13 NMR Spectroscopy: High Resolution Methods and Applications in Organic Chemistry and Biochemistry. VCH Publishers, New York, 515 pp.Google Scholar
  6. 6.
    KALINOWSKI, H. O., BERGER, S., BRAUN, S. 1988. Carbon-13 NMR Spectroscopy. Wiley, New York, 776 pp.Google Scholar
  7. 7.
    FREEMAN, R. 1988. A Handbook of Nuclear Magnetic Resonance. Longman-Wiley, New York, 312 pp.Google Scholar
  8. 8.
    KESSLER, H., GEHRKE, M., GRIESINGER, C. 1988. Two-dimensional NMR spectroscopy: Background and overview of the experiments. Angew. Chem. Int. Ed. Engl. 27: 490–536.CrossRefGoogle Scholar
  9. 9.
    MARTIN, G.E., ZEKTZER, A.S. 1988. Two-Dimensional NMR Methods for Establishing Molecular Connectivity: A Chemist’s Guide to Experiment Selection, Performance, and Interpretation. VCH Publishers, New York, 508 pp.Google Scholar
  10. 10.
    BAX, A., FREEMAN, R., MORRIS, G. 1981. Correlation of proton chemical shifts by two-dimensional Fourier transform NMR. J. Magn. Res. 42: 164–168.Google Scholar
  11. 11.
    BAX, A., FREEMAN, R. 1981. Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J. Magn. Res. 44: 542–561.Google Scholar
  12. 12.
    NOGGLE, J.H., SCHIRMER, R.E. 1971. The Nuclear Overhauser Effect. Chem. Applications. Academic Press, New York, 259 pp.Google Scholar
  13. 13.
    ANET, F.A.L., BOURN, A.J.R. 1965. Nuclear magnetic resonance spectral assignments from nuclear Overhauser effects. J. Amer. Chem. Soc. 87: 5250–5251.CrossRefGoogle Scholar
  14. 14.
    BAX, A., FREEMAN, R., KEMPSELL, S.P. 1980. Natural abundance 13C-13C coupling observed via double-quantum coherence. J. Amer. Chem. Soc. 102: 4849–4851.CrossRefGoogle Scholar
  15. 15.
    MORRIS, G.A. 1986. Modern NMR techniques for structure elucidation. Magn. Reson. Chem. 24: 371–403.CrossRefGoogle Scholar
  16. 16.
    BENN, R., GUENTHER, H. 1983. Modern pulse methods in high-resolution NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 22: 350–380.CrossRefGoogle Scholar
  17. 17.
    BAX, A., FREEMAN, R., FRENKIEL, T.A., LEVITT, M.H. 1981. ssignment of carbon-13 NMR spectra via double-quantum coherence. J. Magn. Res. 43: 478–483.Google Scholar
  18. 18.
    MORRIS, G.A., FREEMAN, R. 1979. Enhancement of nuclear agnetic resonance signals by polarization transfer. J. Amer. Chem. Soc. 101: 760–762.CrossRefGoogle Scholar
  19. 19.
    BAX, A. 1984. Structure determination and spectral assignment by ulsed polarization transfer via long-range 1H-13C couplings. J. Magn. Res. 57: 314–318.Google Scholar
  20. 20.
    DODDRELL, D.M., PEGG, D.T., BENDALL, M.R. 1982. Distortionless enhancement of NMR signals by polarization transfer. J. Magn. Res. 48: 323–327.Google Scholar
  21. 21.
    KESSLER, H., GRIESINGER, C., ZARBOCK, J., LOOSLI, H. 1984. Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC). J. Magn. Res. 57: 331–336.Google Scholar
  22. 22.
    OBER, A G., FRONCZEK, F.R., FISCHER, N.H. 1984. The molecular structure of subcordatolide C., a eudesmanolide from Calea subcordata. J. Nat. Prod. 47: 920–923.CrossRefGoogle Scholar
  23. 23.
    SOUCEK, M., HEROUT, V., SORM, F. 1959. Terpenes. Part CXVIII. Constitution of parthenolide. Collect. Czech. Chem. Commun. 26: 803–810.Google Scholar
  24. 24.
    FISCHER, N.H., OLIVIER, E.J., FISCHER, H.D. 1979. The biogenesis and chemistry of sesquiterpene lactones. In: Prog. Chem. Org. Nat. Prod., (W. Herz, H. Grisebach, G.W. Kirby, eds.), Springer, Wien, Vol. 38, pp. 47–390.Google Scholar
  25. 25.
    JOHNSON, E.S., KADAM, N.P., HYLANDS, D.M., HYLANDS, P.J. 1985. Efficacy of feverfew as prophylactic treatment of migraine. Br. Med. J. 291: 569–573.CrossRefGoogle Scholar
  26. 26.
    FISCHER, N.H., WEIDENHAMER, J.D., RIOPEL, J.L., QUIJANO, L., MENELAOU, M.A. 1990. Stimulation of witchweed germination by sesquiterpene lactones: a structure activity study. Phyto-chemistry 29: 2479–2483.Google Scholar
  27. 27.
    YOSHIOKA, H., MABRY, T.J., TIMMERMANN, B.N. 1973. Sesquiterpene Lactones: Chemistry, NMR, and Plant Distribution. Univ. of Tokyo Press, Tokyo, 544 pp.Google Scholar
  28. 28.
    WAGNER, G. 1983. Two-dimensional relayed coherence transfer spectroscopy of a protein. J. Mag. Res. 55: 151–156.Google Scholar
  29. 29.
    BAX, A., DROBNY, G. 1985. Optimization of two-dimensional homonuclear relayed coherence transfer NMR spectroscopy. J. Mag. Res. 61: 306–320.Google Scholar
  30. 30.
    QUICK, A., ROGERS, D. 1976. Crystal and molecular structure of parthenolide [4,5-epoxygermacra-1(10), 11(13)-dien-12,6-lactone]. J. Chem. Soc. Perkin Trans. II 465–469.Google Scholar
  31. 31.
    PARODI, F., NAUMAN, M.A., FISCHER, N.H. 1987. Complete Carbon-13 assignments of the sesquiterpene lactone 11,13-dihydro-parthenolide using 2D-INADEQUATE. Spectr. Letters 20: 445–450.CrossRefGoogle Scholar
  32. 32.
    HERNANDEZ, H.P., FISCHER, N.H. 1988. Unambiguous structure determination of a new flavonoid 5,6,4’-trihydroxy-7,8,3,-trimeth-oxyflavone by the use of INAPT NMR techniques. Spectr. Letters 21: 927–934.CrossRefGoogle Scholar
  33. 33.
    WEHRLI, F. 1975. Proton-coupled 13C nuclear magnetic resonance spectra involving 13C-1H spin-spin coupling to hydroxyl-protons, a complementary assignment aid. J. Chem. Soc. Chem. Comm. 663–664.Google Scholar
  34. 34.
    VAN LOO, P., DE BRUYN, A., BUDESINSKY, M. 1986. Reinvestigation of the structural assignment of signals in the 1H and 13C NMR spectra of the flavone apigenin. Magn. Res. Chem. 24: 879–882.CrossRefGoogle Scholar
  35. 35.
    VAN DEN BROUKE, C.O., DOMMISSE, R.A., ESMANS, E.L., LEMLI, J.A. 1982. Three methylated flavones from Thymus vulgaris, Phytochemistry 21: 2581–2583.CrossRefGoogle Scholar
  36. 36.
    ZEISBERG, R., BOHLMANN, F. 1974. 13C NMR spectra of polyacetylenes. Chem. Ber. 107: 3800–3805.CrossRefGoogle Scholar
  37. 37.
    BOHLMANN, F., KLEINE, K.M., ARNDT, C., KöHN, S. 1965. Polyacetylen-verbindungen, LXXVIII. Neue Inhaltsstoffe der Gattung Anthemis, L. Chem. Ber. 98: 1616–1622.CrossRefGoogle Scholar
  38. 38.
    BOHLMANN, F., BURKHARDT, T., ZDERO, C. 1973. Naturally Occurring Acetylenes. Academic Press, London and New York, 547 pp.Google Scholar
  39. 39.
    TOWERS, G.H.N. 1987. Biological activities of polyacetylenes of the Asteraceae. Plant Physiol. Life Sci. Adv. 6: 85–92.Google Scholar
  40. 40.
    JENTE, R., OLATUNJI, G.A., BOJOLD, F. 1981. Formation of natural thiophene derivatives from acetylenes by Tagetes patula: Phytochemistry 20: 2169–2175.Google Scholar
  41. 41.
    BU’LOCK, J.D., SMITH, G.N. 1967. The origin of naturally-occurring acetylenes. J. Chem. Soc. 332–336.Google Scholar
  42. 42.
    SIMPSON, T.J. 1986. 13C-NMR in metabolic studies. In: Modern Methods of Plant Analysis, Vol. 2. (H.F. Linskens, J.F. Jackson, eds.), Springer, New York, pp. 1–42.Google Scholar
  43. 43.
    BOHLMANN, F., ZDERO, C. 1985. Naturally occurring thiophenes. In: Heterocyclic Compounds, Vol. 44, Part 1, (A. Weissberger, E.C. Taylor, eds.), John Wiley and Sons, Gronowitz, pp. 261–323.Google Scholar
  44. 44.
    MENELAOU, M.A., FISCHER, N.H., FOROOZESH, M., THOBO- DEAUX, T.M., HJORTSO, M.A., MORRISON, A.F. 1990. Biosynthetic studies of bithiophenes in hairy root cultures of Tagetes patula using 13C-labeled acetates. Spectr. Letters, submitted.Google Scholar
  45. 45.
    HANKE, F.J., KUBO, I., NAYLOR, S. 1989. Assigning 13C-NMR resonances of natural products. J. Nat. Prod. 52: 1237–1245.CrossRefGoogle Scholar
  46. 46.
    DEROME, A.E. 1989. The use of NMR spectroscopy in the structure determination of natural products: two dimensional methods. Nat. Prod. Reports 6: 111–141.CrossRefGoogle Scholar
  47. 47.
    BAX, A., FREEMAN, R. 1982. Long-range proton-carbon-13 NMR spin coupling constants. J. Amer. Chem. Soc. 104: 1099–1100.CrossRefGoogle Scholar
  48. 48.
    YU, C., LEVY, E.C. 1984. Two-dimensional heteronuclear NOE (NOESY) experiments: investigation of dipolar interactions between heteronuclei and nearby protons. J. Amer. Chem. Soc. 106: 6533–6537.CrossRefGoogle Scholar
  49. 49.
    PODANYI, B., KOCSIS, A., SZABO, L., REID, R.S. 1990. An NMR study of the solution conformation of two asperuloside derivatives. Phytochemistry 29: 861–866.CrossRefGoogle Scholar
  50. 50.
    FAURE, R., BABADJAMIAN, A., BALANSARD, B., ELIAS, R., MAILLARD, C. 1987. Concerted use of two-dimensional NMR spectroscopy in the complete assignment of the 13C and 1H NMR spectra of globularin. Mag. Reson. Chem. 25: 327–330.CrossRefGoogle Scholar
  51. 51.
    RODRIGUEZ-HAHN, L., JIMENEZ, M., DIAZ, E., JANKOWSKI, K., DAVOUST, D., FAGERNESS, P. 1990. 2D NMR studies on mortonin A, C., and D. Unambiguous assignment of 13C chemical shifts. Mag. Reson. Chem. 28: 290–298.CrossRefGoogle Scholar
  52. 52.
    VAJS, V., JEREMIC, D., MILOSAVLJEVIC, S., MACURA, S. 1987. Two-dimensional NMR spectra of sesquiterpenes I. Noesy study of caryophyllenes from Inula spiraeifolia. Mag. Reson. Chem. 25: 889–891.CrossRefGoogle Scholar
  53. 53.
    KREBS, H.C., RAKOTOARIMANGO, J.V., HABERMEHL, G.G. 1990. Isolation of spatulenol and (-)-caryophyllene oxide from Vernonia mollissima Don and 1H and 13C reassignment by two-dimensional NMR spectroscopy. Mag. Reson. Chem. 28: 124–128.CrossRefGoogle Scholar
  54. 54.
    FELICIANO, A.S., MIGUEL DEL CORRAL, J.M., CABALLERO, E., ALVAREZ, A., MEDARDE, M. 1986. Cantabric acids: tri-quinane sesquiterpenoids from Artemisia cantabrica. J. Nat. Prod. 49: 845–853.CrossRefGoogle Scholar
  55. 55.
    OSHIMA, Y., WONG, S.M., KONNO, C., CORDELL, G.A., WALLER, D.P., SOEJARTO, D.D., FONG, H.H.S. 1986. Studies on zoapatle: II. Leucantholide, a novel sesquiterpene lactone from Montanoa leucantha ssp. leucantha. J. Nat. Prod. 49: 313–317.PubMedCrossRefGoogle Scholar
  56. 56.
    PARODI, F.J., FISCHER, N.H. 1988. Heteronuclear relayed correlation NMR spectroscopy of a guaianolide l(10)-epoxide. Spectr. Letters 21: 69–75.CrossRefGoogle Scholar
  57. 57.
    TAKEDA, Y., ICHIHARA, T., OTSUKA, H. 1990. Isolongirabdiol, a new diterpenoid from Rabdosia longituba. J. Nat. Prod. 53: 138–142.CrossRefGoogle Scholar
  58. 58.
    NANAYAKKARA, N.P.D., KLOCKE, J.A., COMPADRE, C.M., HUSSAIN, R.A., PIZZUTO, J.M., KINGHORN, A.D. 1987. Characterization and feeding deterrent effects on the aphid, Schizaphis graminum, of some derivatives of the sweet compounds, stevioside and rebandioside A. J. Nat Prod. 50: 434–441.PubMedCrossRefGoogle Scholar
  59. 59.
    CHOI, Y.H., PIZZUTO, J.M., KINGHORN, A.D., FARNSWORTH, N.R. 1988. Plant anticancer agents. XLVI. Cytotoxic casbane-type constituents of Agrostistachys hookeri. J. Nat. Prod. 51: 110–116.PubMedCrossRefGoogle Scholar
  60. 60.
    CHEN, W., MENG, Q., PIANTINI, U., HESSE, M. 1989. Two novel diterpenoids from Pygmaeopremma herbacea. J. Nat. Prod. 52: 581–587.CrossRefGoogle Scholar
  61. 61.
    BURKE, J.W., DOSKOTCH, R.W. 1990. Highfield 1H- and 13C-NMR assignments of grayanotoxins I, IV, and XIV isolated from Kalmia angustifolia. J. Nat. Prod. 53: 131–137.PubMedCrossRefGoogle Scholar
  62. 62.
    REYNOLDS, W.E., MCLEAN, S., PERPICK-DUMONT, M., ENRIQUEZ, R.G. 1989. Improved 13C-1H shift correlation spectra for indirectly bonded carbons and hydrogens, the FLOCK sequence. Mag. Reson. Chem. 27: 162–169.CrossRefGoogle Scholar
  63. 63.
    HAMBURGER, M.O., SHIEH, H.L., ZHOU, B.N., PEZZUTO, J.M., CORDELL, G.A. 1989. Pseudolaric acid B: NMR assignments, conformational analysis and cytotoxicity. Mag. Reson. Chem. 27: 1025–1030.CrossRefGoogle Scholar
  64. 64.
    KRUK, C., DEVRIES, N.K., VAN DER VELDEN, G. 1990. Two-dimensional INADEQUATE 13C NMR. Studies of maleopimaric acid, the Diels-Alder adduct of levopimaric acid and maleic anhydride, and of abietic acid. Mag. Reson. Chem. 28: 443–447.CrossRefGoogle Scholar
  65. 65.
    TORI, M., MATSUDA, R., SONO, M., ASAKAWA, Y. 1988. 13CNMR assignment of dammarane triterpenes and dendropanoxide: Application of 2D long-range 13C-1h correlation spectra. Mag. Reson. Chem. 26: 581–590.CrossRefGoogle Scholar
  66. 66.
    ARISAWA, M., FUJITA, A., HAYASHI, T., SHIMIZU, M., MORITA, N. 1988. Revision of 1H- and 13C NMR assignments of lano-stanoids from Ganoderma lucidum by 2D-NMR studies. J. Nat. Prod. 51:54–59.CrossRefGoogle Scholar
  67. 67.
    WILKINS, A.L., BIRD, P.W., JAGER, P.M. 1987. Carbon-13 NMR study of some triterpene hydrocarbons of the hopane group. Mag. Reson. Chem. 25: 503–507.CrossRefGoogle Scholar
  68. 68.
    EMMONS, G.T., WILSON, W.K., SCHROEPFER JR., G.J. 1989. 1H and 13C NMR assignments for lanostan 3β-ol derivatives: Revised assignment for lanosterol. Mag. Reson. Chem. 27: 1012–1024.CrossRefGoogle Scholar
  69. 69.
    KAMISAKE, W., HONDA, C., SUWA, K., ISOI, K. 1987. Studies of 13C NMR spectra of 13C-enriched cycloartenol biosynthesized from [l-13C]-[2–13C]- and [l,2–13C2]-acetate. Revised 13C NMR spectral assignments of cyclo-artenol and cycloartanol and 13C NMR spectral support for the generally accepted skeleton formation mechanism of cycloartenol. Mag. Reson. Chem. 25: 683–687.CrossRefGoogle Scholar
  70. 70.
    BAXTER, R.L., PRICE, K.P., FENWICK, G.R. 1990. Sapogenin structure: Analysis of the 13C- and 1H-NMR spectra of soyasa-pogenol B. J. Nat Prod. 53: 298–302.CrossRefGoogle Scholar
  71. 71.
    PRAHASH, D., ROY, R., BHAKUNI, D.S., WAHIDULLA, S., KAMAT, S.Y. 1989. 2D-NMR studies of a novel steroid from the red alga Acantophora spicifera. J. Nat. Prod. 52: 686–692.CrossRefGoogle Scholar
  72. 72.
    DUH, C.Y., PEZZUTO, J.M., KINGHORN, A.D., LEUNG, S.L., FARNSWORTH, N.R. 1987. Plant anticancer agents. XLIV: cytotoxic constituents from Stizophyllum riparium. J. Nat. Prod. 50: 63–74.PubMedCrossRefGoogle Scholar
  73. 73.
    YAMAGISHI, T., HARUNA, M., YAN, X.Z., CHANG, J.J., LEE, K.H. 1989. Antitumor agents. 110. Bryophyllin B, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. J. Nat. Prod. 52: 1071–1079.PubMedCrossRefGoogle Scholar
  74. 74.
    KLEIMAN, R., PLATTNER, D., WEISLE, D. 1988. Antigermination activity of phenylpropenoids from the genus Pimpinella. J. Nat. Prod. 51:249–256.CrossRefGoogle Scholar
  75. 75.
    PETTIT, G.R., SCHAUFELBERGER, D.E. 1988. Isolation and structure of the cytostatic lignan glycoside phyllanthostatin A. J. Nat. Prod. 51: 1104–1112.PubMedCrossRefGoogle Scholar
  76. 76.
    SATI, S.P., CHAUKIYAL, D.C., SATI, O.P., YAMADA, F., ONO, M. 1989. 2D NMR structure elucidation of a new coumarin glycoside from Xeromphis spinosa. J. Nat. Prod. 52: 376–379.CrossRefGoogle Scholar
  77. 77.
    MEKSURIYEN, D., CORDELL, G.A. 1988. Retrodihydrochalcones from Dracaena loureir. J. Nat. Prod. 51: 1129–1135.PubMedCrossRefGoogle Scholar
  78. 78.
    JUNG, J.H., MCLAUGHLIN, J.L. 1990. 13C., 1H NMR Long-range coupling and deuterium isotope effects of flavanones. Phyto-chemistry 29: 1271–1275.Google Scholar
  79. 79.
    TAYLOR, R.B., CORLEY, D.G., TEMPESTA, M.S., FONUM, Z.T., AYAFOR, J.F., WANDJE, J., NGOZI IFEADIKE, P. 1986. 2,3-Dihydroauriculatin, a new prenylated isoflavanone from Erythrina senegalensis. Application of the selective INEPT technique. J. Nat. Prod. 49: 670–673.PubMedCrossRefGoogle Scholar
  80. 80.
    BREYTENBACH, J.C. 1986. Isoflavone glycosides from Neorautanenia amboensis. J. Nat. Prod. 49: 1003–1009.CrossRefGoogle Scholar
  81. 81.
    WALL, M.E., WANI, M.C., MANIKUMAR, G., TAYLOR, H., MCGIVNEY, R. 1989. Plant antimutagens: 6. Intricatin and intrica-tinol, new antimutagenic homoisoflavonoids from Hoffmanosseggia intricata. J. Nat. Prod. 52: 774–778.PubMedCrossRefGoogle Scholar
  82. 82.
    MOLYNEUX, R.J., BENSON, M., WONG, R.Y, TROPEA, J.E., ELBEIN, A.D. 1988. Australine, a novel pyrrolizidine alkaloid glucosidase inhibitor from Castanospermwn australe. J. Nat. Prod. 51: 1198–1206.CrossRefGoogle Scholar
  83. 83.
    ASIBAL, C.F., GLINSKI, J.A., GELBAUM, L.T., ZALKOW, L.H. 1989. Pyrrolizidine alkaloids from Cynoglossum creticum. Synthesis of the pyrrolizidine alkaloids echinatine, rinderine, and analogues. J. Nat. Prod. 52: 109–118.PubMedCrossRefGoogle Scholar
  84. 84.
    ZALKOW, L.H., ASIBAL, C.F., GLINSKI, J.A., BONETTI, S.J., GELBAUM, L.T., VANDERVEER, D., POWIS, G. 1988. Macrocyclic pyrrolidine alkaloids from Senecio anonymus. Separation of a complex alkaloid extract using droplet counter-current chromatography. J. Nat. Prod. 51: 690–702.PubMedCrossRefGoogle Scholar
  85. 85.
    MARTIN, G.E., ZEKTZER, A.S. 1988. Long-range two-dimensional heteronuclear chemical shift correlation. Mag. Reson. Chem. 26: 631–652.CrossRefGoogle Scholar
  86. 86.
    KERR, K.M., KOOK, A.M., DAVIS, P.J. 1986. Highfield and 2D-NMR studies with the aporphine alkaloid glaucine. J. Nat. Prod. 49: 576–582.PubMedCrossRefGoogle Scholar
  87. 87.
    FUKAMIYA, N., OKANO, M., ARATANI, T., NEGORO, K., MCPHAIL, A.T., JU-ICHI, M., LEE, K.H. 1986. Anti tumor agents. 79. Cytotoxic antileukemic alkaloids from Bruce a anti-clysenterica. J. Nat. Prod. 49: 428–434.PubMedCrossRefGoogle Scholar
  88. 88.
    LIN, L.Z., CORDELL, G.A. 1990. 13C-NMR assignment of campto-thecine, and 10-hydroxycamptothecine. J. Nat. Prod. 53: 186–189.PubMedCrossRefGoogle Scholar
  89. 89.
    MUKHOPADHYAY, S., BANERJEE, S.K., ATAL, C.K., LIN, L.J., CORDELL, G.A. 1987. Alkaloids of Corydalis govaniana. J. Nat. Prod. 50: 270–272.CrossRefGoogle Scholar
  90. 90.
    JANSSEN, R.H.A.M., LOUSBERG, R.J.J.C., WIJKENS, P., KRUK, C., THEUNS, H.G. 1989. Assignment of 1H and 13C-NMR resonances of some isoquinoline alkaloids. Phytochemistry 28: 2833–2839.CrossRefGoogle Scholar
  91. 91.
    SUN, F., LIANG, X.T., YU, D.Q. 1987. A 2D-NMR structure determination of spirasine X, a new diterpene alkaloid from Spiraea japonica. J. Nat. Prod. 50: 923–926.CrossRefGoogle Scholar
  92. 92.
    SNYDER, J.K., ZHANG, X., JOSHI, B.S., PELLETIER, S.W. 1989. Complete spectral assignment of tatsidine by two-dimensional NMR techniques. 1989. Mag. Reson. Chem. 27: 1057–1064.CrossRefGoogle Scholar
  93. 93.
    CRAIG, D.A., MARTIN, G.E. 1986. Proton double quantum and relayed proton double quantum coherence two-dimensional NMR mapping of proton-proton connectivity networks in natural products. A model study of strychnine. J. Nat. Prod. 49: 456–465.CrossRefGoogle Scholar
  94. 94.
    CHENG, D., GUO, J., CHU, T.T., RöDER, E. 1988. A study of Stemona alkaloids. III. Application of 2D-NMR spectroscopy in the structure determination of stemoninine. J. Nat. Prod. 51: 202–211.CrossRefGoogle Scholar
  95. 95.
    JASEJA, M., PERLIN, A.S., DAIS, P. 1990. Two dimensional NMR spectral study of the tautomeric equilibria of D-fructose and related compounds. Mag. Reson. Chem. 28: 283–289.CrossRefGoogle Scholar
  96. 96.
    KöVER, K.E., BATTA, G. 1989. 2D Heteronuclear NOE spectroscopy with full w1 decoupling. A method for elimination of 13C-1H coupling dependence. Mag. Reson. Chem. 27: 396–398.CrossRefGoogle Scholar
  97. 97.
    HRICOVINI, M., LIPTAJ, T. 1989. Measurement of long-range proton-carbon coupling constants in medium-sized molecules. Mag. Reson. Chem. 27: 1052–1056.CrossRefGoogle Scholar
  98. 98.
    MCINTYRE, D.D., VOGEL, H.J. 1989. Complete assignment of the 1H-NMR spectrum of stachyose by two-dimensional NMR spectroscopy. J. Nat. Prod. 52: 1008–1014.CrossRefGoogle Scholar
  99. 99.
    FLOSS, H.G., KELLER, P.J., BEALE, J.M. 1986. Studies on the biosynthesis of antibiotics. J. Nat. Prod. 49: 957–970.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Nikolaus H. Fischer
    • 1
  • David Vargas
    • 2
  • Marios Menelaou
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  2. 2.College of Basic SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations