Mass Spectrometry in the Chemistry of Natural Products

  • Jan St. Pyrek
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 25)


Mass spectrometry (MS) is one of the very first spectral methods dating back to the beginning of this century (1913, J.J. Thomson, parabola spectrograph; 1918, A.J. Dempster, spectrometer, and 1919, F.W. Aston, spectrograph).1 It measures mass, one of the two basic properties of matter, as the mass-to-charge-ratio of ions, (m/z in atomic mass units, scale relative to 12C) while other spectral methods usually measure frequency, either absorbed or emitted. Thus, in a sense, the mass spectrometer is an extension of the balance, the principal tool of a chemical laboratory. Sensitivity of mass spectral measurements approaches single ion detection and the accuracy of mass determination may be in order of ppm. The quest for this precise information characterizes all three major phases of the application and development of mass spectrometry: detection of isotopes, “inorganic phase”, followed by extensive analysis of molecules of relatively low molecular weight, “organic phase”, and the most recent “biological phase” in which ionization and analysis of ions derived from a much wider variety of polar and large organic molecules becomes possible. Immense developments of instrumentation, increasing analytical applications, and an ever increasing range of compounds accessible to measurement do not change the heart of mass spectrometry and the simplicity of the fundamental information provided.


Bile Acid Electron Impact Ionization Fast Atom Bombardment Nominal Mass Fourier Transform Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (a).
    MCDOWELL, C.A. 1963. “Mass Spectrometry”, McGraw-Hill, Inc.;Google Scholar
  2. 1(b).
    Mclafferty, F.W. 1973. “Interpretation of mass spectra”, II ed. W.A. Benjamin, Inc.;Google Scholar
  3. 1(c).
    HOWE, I., WILLIAMS, D.H., BOWEN, R.D. 1981. “Mass spectrometry: principles, applications”, 2nd ed;Google Scholar
  4. 1(d).
    WHITE, F.A., WOOD, G.M. 1986. “Mass spectrometry, applications in science, engineering”. Wiley, New York.Google Scholar
  5. 2. (a).
    BURLINGAME, A.L. et al. 1986, 1988, 1990. Mass spectrometry. Anal. Chem. 58: 165R–211R;PubMedCrossRefGoogle Scholar
  6. 2. (a1).
    BURLINGAME, A.L. et al. 1986, 1988, 1990. Mass spectrometry. Anal. Chem. 60: 294R–324R;PubMedCrossRefGoogle Scholar
  7. 2. (a2).
    BURLINGAME, A.L. et al. 1986, 1988, 1990. Mass spectrometry. Anal. Chem. 62: 268R–303R;PubMedCrossRefGoogle Scholar
  8. 2. (b).
    DELGASS, W.N., COOKS, R.G. 1987. Focal points in mass spectrometry. Science 235: 545–553;PubMedCrossRefGoogle Scholar
  9. 2(c).
    MCLAFFERTY, F.W. 1990. Analytical information from mass spectrometry, past and future. J. Am. Soc. Mass Spectrom. 1: 1–5.CrossRefGoogle Scholar
  10. 3.
    DAVIES, R.E., FREVD, P.J. 1989. C167H336 is the smallest alkane with more realizable isomers than the observed Universe has “particles”. J. Chem. Educ, 66: 278–281.CrossRefGoogle Scholar
  11. 4.
    WILLIAMS, D.H., STONE, M.J., HAUCK, P.R., RAHMAN, S.K. 1989. Why are secondary metabolites (natural products) biosyn-thesized? J. Nat. Prod. 52: 1189–1208.PubMedCrossRefGoogle Scholar
  12. 5.
    MABUT, MD. A., DEKREY, M.J., COOKS, R.G. 1985. Surface induced dissociation of molecular ions. Int. J. Mass Spectrom. Ion Processes 67: 285–294.CrossRefGoogle Scholar
  13. 6. (a).
    MCLAFFERTY, F.W. 1980. Tandem mass spectrometry (MS/MS): a promising new analytical technique for specific component determination in complex mixtures. Acc. Chem. Res. 13: 33–39;CrossRefGoogle Scholar
  14. 6(b).
    ROUSH, R.A., COOKS, R.G. 1984. Characterization of alkaloids and other secondary metabolites by multistage mass spectrometry. J. Nat. Prod. 47: 197–214.CrossRefGoogle Scholar
  15. 7.
    COTTRELL, J.S., EVANS, S. 1987. Characteristics of a multichannel electro-optical detection system and its application to the analysis of large molecules by fast atom bombardment mass spectrometry. Anal. Chem. 59: 1990–1995.CrossRefGoogle Scholar
  16. 8.
    COTTER, R.J. 1989. Time-of-flight mass spectrometry: an increasing role in the life sciences. Biom. Environ. Mass Spect. 18: 513–532.CrossRefGoogle Scholar
  17. 9.
    ENKE, C.G., WATSON, J.T., ALLISON, J., HOLAND, J.F. 1989. Analysis of data rate requirements for high performance GC-MS: the case for TOF-MS with time array detection. Proceedings of the 37th ASMS conference, 32.Google Scholar
  18. 10.
    MAMYRIN, B.A., KARATAEV, V, SHMIKK, D.V., ZAGULIN, D.V. 1973. The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov. Phys. JETP, 37, 45.Google Scholar
  19. 11.
    WOLF, B., MUDGETT, P.D., MACFARLANE, R.D. 1990. A new method for electrostatic ion deflection. J. Am. Soc. Mass Spectrom. 1: 28–36.CrossRefGoogle Scholar
  20. 12.
    COTTER, R.J. 1988. Plasma desorption mass spectrometry: coming of age. Anal. Chem. 60: 781A–793A.PubMedCrossRefGoogle Scholar
  21. 13.
    TORGERSON, D.F., SKOWRONSKI, R.P., MACFARLANE, R.D. 1974. New method for the mass spectrometry of non-volatile compounds. Biochem. Biophys. Res. Commun. 60: 616–621.PubMedCrossRefGoogle Scholar
  22. 14. (a).
    WILKINS, C.L., GROSS, M.L. 1981. Fourier transform mass spectrometry. Anal. Chem. 53: 1661A–1676A;CrossRefGoogle Scholar
  23. 14(b).
    GROSS, M. L., REMPEL, D.L. 1984. Fourier transform mass spectrometry. Science 226: 261–268.PubMedCrossRefGoogle Scholar
  24. 15.
    KERLEY, E.L., RUSSELL, D.H. 1989. Mass and Energy selective ion partitioning in a two-section Fourier transform ion cyclotron resonance spectrometer cell. Anal. Chem. 61: 53–57.CrossRefGoogle Scholar
  25. 16.
    JAMES, C.F., WILKINS, C.L. 1990. An external secondary ion source for Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1: 208–216.CrossRefGoogle Scholar
  26. 17.
    GHADERI, S., KULKARNI, P.S., LEDFORD, E.B., JR., WILKINS, C.L., GROSS, M.L. 1981. Chemical ionization in Fourier transform mass spectrometry. Anal. Chem. 53: 428–437.CrossRefGoogle Scholar
  27. 18. (a).
    LEDFORD, E.B., GHADERI, S., WHITE, R.L., SPENCER, R.B., KULKARNI, P.S., WILKINS, C.L., GROSS, M.L. 1980. Exact mass measurement by Fourier transform mass spectrometry. Anal. Chem. 52: 463–468;CrossRefGoogle Scholar
  28. 18(b).
    WHITE, R.L., ONYIRIUKA, E.C., WILKINS, C.L. 1983. Exact mass measurement in the absence of calibrant by Fourier transform mass spectrometry. Anal. Chem. 55: 339–343.CrossRefGoogle Scholar
  29. 19. (a).
    CODY, R.B., BURNIER, R.C., FREISER, B.S. 1982. Collision-induced dissociation with Fourier transform mass spectrometry. Anal. Chem. 54: 96–101;CrossRefGoogle Scholar
  30. 19(b).
    CODY, R.B. 1988. Accurate mass measurements on daughter ions from collisional activation in Fourier transform mass spectrometry. Anal. Chem. 60: 917–923.CrossRefGoogle Scholar
  31. 20.
    CODY, R.B., HEIN, R.E., GOODMAN, S.D. 1987. Stored waveform inverse Fourier transform excitation for obtaining increased parent ion selectivity in collisionally activated dissociation: preliminary results. Rapid Commun. Mass Spectrom. 1: 99–102.CrossRefGoogle Scholar
  32. 21.
    ALLISON, J., STEPNOWSKI, R.M. 1987. The hows and whys of ion trapping. Anal. Chem. 59: 1072A–1088A.CrossRefGoogle Scholar
  33. 22.
    COOKS, R.G., KAISER, R.E. 1990. Quadrupole ion trap mass spectrometry. Acc. Chem. Res. 23: 213–219.CrossRefGoogle Scholar
  34. 23.
    ABERTH, W. 1980. Characteristics of a volcano field ionization source mass spectrometer operating at 30 kV accelerating voltage. Biomed. Mass Spectrom. 7: 367–371;PubMedCrossRefGoogle Scholar
  35. 23(b).
    ABERTH, W. 1986. High mass analysis capability of Wien mass spectrometer. Int. J. Mass Spectrom., Ion Processess 68: 209–211.CrossRefGoogle Scholar
  36. 24. (a).
    ABERTH, W. 1986. Instrumental conditions of secondary ion mass spectrometry that affect sensitivity for observation of very high masses. Anal. Chem. 58: 1221–1225;PubMedCrossRefGoogle Scholar
  37. 24(b).
    ABERTH, W.H., BURLINGAME, A.L. 1988. Effect of primary beam energy on the secondary ion sputtering efficiency of liquid secondary ionization mass spectrometry in the 5–30 keV range. Anal. Chem. 60: 1426–1428.PubMedCrossRefGoogle Scholar
  38. 25.
    GIBSON, B.R., Yu, Z., ABERTH, W., BURLINGAME, A.L., BASS, N.M. 1988. Revision of the blocked N terminus of rat heart fatty acid-binding protein by liquid secondary ion mass spectrometry. J. Biol. Chem. 263: 4182–4185.PubMedGoogle Scholar
  39. 26.
    MIKAYA, A, ZAIKIN, V.G. 1990. Reaction gas chromatography/ mass spectrometry. Mass Spectrom. Rev. 9: 115–132.CrossRefGoogle Scholar
  40. 27.
    WILKINS, C.L. 1987. Linked gas chromatography infrared mass spectrometry. Anal Chem. 59: 571A–581A.PubMedCrossRefGoogle Scholar
  41. 28.
    LEE, S.P., LESTER, R., PYREK, J. ST. 1987. Vulpecholic acid (1α,3α,7α-trihydroxy-5β-cholan-24-oic acid): a novel bile acid of a marsupial Trichosurus vulpecula (Lesson). J. Lipid Res. 28: 19–31.PubMedGoogle Scholar
  42. 29.
    RADOMINSKA-PYREK, A., ZIMNIAK, P., CHARI, M., GOLUNSKI, E., LESTER, R., PYREK, J. ST. 1986. Glucuronides of monohydroxylated bile acids: specificity of microsomal glucuronyl-transferase for glucuronidation site, C-3 configuration, and side chain length. J. Lipid Res. 27: 89–101.PubMedGoogle Scholar
  43. 30.
    SHATTUCK, K.E., RADOMINSKA-PYREK, A., ZIMNIAK, P., ADCOCK, E.W., LESTER, R., PYREK, J. ST. 1986. Metabolism of 24-norlithocholic acid in the rat: formation of hydroxyl- and carboxyl-linked glucuronides and effect on bile flow. Hepatology 6: 869–873.PubMedCrossRefGoogle Scholar
  44. 31.
    RADOMINSKA-PYREK, A., ZIMNIAK, P., IRSHAID, Y.M., LESTER, R., TEPHLY, T. R., PYREK, J. ST. 1987. Glucuro-nidation of 6α-hydroxy bile acids by human microsomes. J. Clin. Ivest 80: 234–241.CrossRefGoogle Scholar
  45. 32.
    HUANG, E.C., WACHS, T., CONBOY, J.J., HENION, J D. 1990. Atmospheric pressure ionization mass spectrometry. Anal. Chem., 62: 713A–725A.CrossRefGoogle Scholar
  46. 33. (a).
    VESTAL, M.L. 1984. High-performance liquid chromatography-mass spectrometry. Science 226: 275–281;PubMedCrossRefGoogle Scholar
  47. 33(b).
    COVEY, T.R., LEE, E.D., BRUINS, A.P., HENION, J.D. 1986. Liquid chromatography /mass spectrometry. Anal. Chem. 58: 1451A–1461A.CrossRefGoogle Scholar
  48. 34.
    FENN, J.B., MANN, M., MENG, C.K., WONG, S.F., WHITEHOUSE, C.M. 1990. Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9: 37–70.CrossRefGoogle Scholar
  49. 35.
    ALEKSANDROV, M.L., GALL, L. N., KRASNOV, N.V., NIKOLAEV, V, SUKROV, V. A. 1984. Mass spectrometric analysis of thermally unstable compounds of low volatility by the extraction of ions from solution at atmospheric pressure. J. Anal. Chem. (transi.) 40: 1227–1236.Google Scholar
  50. 36.
    SMITH, R.D., LEO, J.A., EDMONDS, C.G., BARINAGA, C.J., UDSETH, H.R. 1990. New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem. 62: 882–899.PubMedCrossRefGoogle Scholar
  51. 37.
    WILLOUGHBY, R.C., BROWNER, R.F. 1984. Monodisperse aerosol generation interface for combining liquid chromatography with mass spectrometry. Anal. Chem. 56: 2626–2631.CrossRefGoogle Scholar
  52. 38.
    LATTIMER, R.P., SCHULTEN, H.R. 1989. Field ionization and field desorption mass spectrometry: past, present, and future. Anal. Chem. 61: 1201A–1215A.CrossRefGoogle Scholar
  53. 39. (a).
    ABERTH, W., STRAUB, K.M., BURLINGAME, A.L. 1982. Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Anal. Chem. 54: 2029–2034;CrossRefGoogle Scholar
  54. 39(b).
    WILLAMS, D.H., BRADLEY, C., BOJESEN, G., SANTIKARN, S., TAYLOR, L.C.E. 1981. Fast atom bombardment mass spectrometry: a powerful technique for the study of polar molecules. J. Am. Chem. Soc. 103: 5700–5704;CrossRefGoogle Scholar
  55. 39(c).
    FENSELAU, C. 1984. Fast atom bombardment and middle molecule mass spectrometry. J. Nat. Prod. 47: 215–225.CrossRefGoogle Scholar
  56. 40.
    FENSELAU, C., COTTER, R.J. 1987. Chemical aspects of fast atom bombardment Chem. Rev. 87: 501–512.CrossRefGoogle Scholar
  57. 41.
    PETTIT, G.R., HOLZAPFEL, C.W., CRAGG, G.M. 1984. Mass measurements of natural products by solution phase secondary ion mass spectrometry employing silver(I) and thallium(I) derivatives. J. Nat. Prod. 47: 914–946.Google Scholar
  58. 42.
    NAYLOR, S., FINDEIS, A.F., GIBSON, B.W., WILLIAMS, D.H. 1986. An approach toward the complete FAB analysis of enzymatic digests of peptides and proteins. J. Am. Chem. Soc. 108: 6359–6363.CrossRefGoogle Scholar
  59. 43. (a).
    SURMAN, D.J., VICKERMAN, J.C. 1981. Fast atom bombard ment quadrupole mass spectrometry. J. Chem. Soc., Chem. Commun. 324–325;Google Scholar
  60. 43(b).
    BARBER, M., BARDOLI, R.S., SEDGWICK, R.D., TYLER, A.N. 1981. Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J. Chem. Soc., Chem. Commun. 325–326; 1982., Elliot, G.J. 1982. Fast atom bombardment mass spectrometry. Anal. Chem. 54: 645A-657A.CrossRefGoogle Scholar
  61. 44. (a).
    BIEMANN, K. 1986. Mass spectrometric methods for protein sequencing. Anal. Chem. 58: 1288A–1300A;PubMedCrossRefGoogle Scholar
  62. 44(b).
    BIEMANN, K., MARTIN, S. 1987. Mass Spectrom. Rev. 6: 1–75;CrossRefGoogle Scholar
  63. 44(c).
    MORRIS, H. R., GREER, F. M. 1988. Mass spectrometry of natural and recombinant proteins and glycoproteins. Trends in Biotechnology 6: 140–147.CrossRefGoogle Scholar
  64. 45. (a).
    HUNT, D.F., YATES III, J.R., SHABANOWITZ, J., WINSTON, S., HAUER, C.R. 1986. Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 83: 6233–6237;PubMedCrossRefGoogle Scholar
  65. 45(b).
    TOMMER, K. B. 1989. The development of fast atom bombardment combined with tandem mass spectrometry for the determination of biomole-cules. Mass Spectrom. Rev. 8: 445–482, 483–511.CrossRefGoogle Scholar
  66. 46.
    ITO, Y., TAKEUCHI, T., ISHII, D., GOTO, M. 1985. Direct coupling of micro-high-performance liquid chromatography with fast atom bombardment mass spectrometry. J. Chromatogr. 346: 161–166.CrossRefGoogle Scholar
  67. 47.
    Caprioli, R.M., 1990. Continuous-flow fast atom bombardment mass spectrometry. Anal. Chem. 62: 477A–485A.PubMedCrossRefGoogle Scholar
  68. 48.
    YERGEY, J., HELLER, D., HANSEN, G., COTTER, R.J., FENSELAU, C. 1983. Isotopic distribution in mass spectra of large molecules. Anal. Chem. 55: 353–356.CrossRefGoogle Scholar
  69. 49.
    ROEPSDORFF, P. 1989. Plasma desorption mass spectrometry of peptides and proteins. Acc. Chem. Res. 22: 421–427.CrossRefGoogle Scholar
  70. 50.
    KARAS, M., HILLENKAMP, F. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60: 2299–2301.PubMedCrossRefGoogle Scholar
  71. 51.
    BEYNON, J.H. 1960. “Mass spectrometry, its application to organic chemistry”, Elsevier.Google Scholar
  72. 52.
    LUDWIG, H. 1847. Ueber die Bestandtheile des Lactucariums. Arch. Pharm. 100: 1–19.CrossRefGoogle Scholar
  73. 53.
    PYREK, J. ST. 1977. Sesquiterpenes of Lactuca serriola L., the structure of 8-deoxylactucin and the site of the esterification of lactupicrin. Roczniki Chemii 51: 2165–2170.Google Scholar
  74. 54.
    PYREK, J. ST. 1985. Sesquiterpenes of Cichorium intybus L. and Leontodon autumnalis L. Phytochemistry 24: 186–188.CrossRefGoogle Scholar
  75. 55.
    KOCOR, M., PYREK, J. ST. 1973. Cyclotrichosantol, a new C31-nortriterpene. J. Org. Chem. 38: 3688–3690.PubMedCrossRefGoogle Scholar
  76. 56.
    PYREK, J. ST. 1970. New pentacyclic diterpene, trachyloban-19-oic acid from sunflower. Tetrahedron 26: 5029–5032.CrossRefGoogle Scholar
  77. 57.
    PYREK, J. ST. 1984. Neutral diterpenoids of Helianthus annuus L. J. Nat. Prod. 47: 822–827.CrossRefGoogle Scholar
  78. 58. (a).
    MCCORKINDALE, N.J., BAXTER, R.L., ROY, T.P., SHIELDS, H.S., STEWART, R.M., HUTCHINSON, S.A. 1978. Synthesis and chemistry of N-benzoyl-O-[N’-benzoyl-L-phenylalanyl]-L-phenyl-alaninol, the major mycelial metabolite of Penicillium canadense. Tetrahedron 34: 2791–2795;CrossRefGoogle Scholar
  79. 58(b).
    BIRD, B.A., CAMPBELL, I.M. 1982. Occurrence and biosynthesis of asperphenamate in solid cultures of Penicillium brevicompactum. Phytochem. 21: 2405–2406.CrossRefGoogle Scholar
  80. 59.
    PYREK, J. ST. 1980. New triterpenes of Compositae plant flowers. Revista Latinoamer. Quim. 38–44.Google Scholar
  81. 60.
    SANTER, J.O., STEVENSON, R. 1962. Arnidiol and faradiol. J. Org. Chem. 27: 3204–3208.CrossRefGoogle Scholar
  82. 61.
    PYREK, J. ST., BARANOWSKA, E. 1973. Faradiol and arnidiol, revision of the structure. Tetrahedron Letters, 809–810.Google Scholar
  83. 62.
    PYREK, J. ST. 1977. Faradiol and arnidiol, revision of the structure. Roczniki Chemii 51: 2331–2342.Google Scholar
  84. 63.
    PYREK, J. ST., BARANOWSKA, E. 1978. Mass spectral fragmentation of 16-substituted taraxanes. Polish J. Chem. 52: 97–106.Google Scholar
  85. 64.
    JOLAD, S.D., STEELINK, C. 1969. Thurberin, a new pentacyclic triterpene from organ pipe cactus. J. Org. Chem. 34: 1367–1369.CrossRefGoogle Scholar
  86. 65.
    PYREK, J. ST., BARANOWSKA, E. 1977. The revised structure of Calenduladiol (thurberin). Roczniki Chemii 51: 1141–1146.Google Scholar
  87. 66.
    PYREK, J. ST. 1977. The structure of coflodiol and isolation of maniladiol. Roczniki Chemii 51: 2493–2497.Google Scholar
  88. 67.
    MCLAFFERTY, F.W., VENKATARGHAVAN, R. 1982. “Mass Spectral Correlations”, II ed. Am. Chem. Soc..CrossRefGoogle Scholar
  89. 68.
    PYREK, J. ST., CZYZEWSKA, E. 1978. Hydrogen bromide elimination reaction s from 15α-bromo-16-oxotaraxan-3β-ol acetate. Pentacyclic triterpene rearrangements. 11th JUPAC, Proc. 3: 208–213.Google Scholar
  90. 69.
    KOCOR, M., PYREK, J. ST., ATAL, C.K., BEDI, K.L., SHARMA, B.R. 1973. Triterpenes of Datura innoxia Mill., structure of datura-diol and daturaolone. J. Org. Chem. 38: 3685–3688.PubMedCrossRefGoogle Scholar
  91. 70. (a).
    DIEKMAN, J., DJERASSI, C. 1967. Mass spectrometry of some steroid trimethylsilyl ethers. J. Org. Chem. 32: 1005–1012;PubMedCrossRefGoogle Scholar
  92. 70(b).
    DIEKMAN, J., THOMSON, J.B., DJERASSI, C. 1967. The electron impact induced fragmentations and rearrangements of trimethylsilyl ethers, amines, and sulfides. J. Org. Chem. 32: 3904–3919;CrossRefGoogle Scholar
  93. 70(c).
    BROOKS, C.J.W., HORNING, E.C., YOUNG, J.S. 1968. Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids 3: 391–402;PubMedCrossRefGoogle Scholar
  94. 70(d).
    HARVEY, D.J., MIDDLEDITCH, B.S., BROOKS, C.J.W. 1982. Mass spectra of the trimethylsilyl ethers of some 3β-hydroxy-delta-5-C21 steroids. Biomedical Mass Spectrom. 9: 411–418.CrossRefGoogle Scholar
  95. 71.
    DE BERNARDI, M., MELLERIO, G., VID ARI, G., VITA-FINZI, P., FRONZA, G., KOCOR, M., PYREK, J. ST. 1981. Triterpenes of Naematoloma sublateritium. J. Nat Prod. 44: 351–356.CrossRefGoogle Scholar
  96. 72.
    VANDENHEUVEL, W. J.A. 1986. Drug metabolite identification: stable isotope methods. J. Clin. Pharmacol. 26: 427–434.PubMedGoogle Scholar
  97. 73.
    TCHOLAKIAN, R.K., STEIBERGER, A., NEWAZ, S.N. 1987. Identification of a new Sertoli cell metabolite of testosterone: 5a-androstane-3α,16α,17β-triol, by HPLC and GC-MS. J. Steroid Biochem. 26: 619–625.PubMedCrossRefGoogle Scholar
  98. 74.
    Chace, D.H., Abramson, F.P., 1989. Selective detection of carbon-13, nitrogen-15, and deuterium labeled metabolites by capillary gas chromatography-chemical reaction interface/mass spectrometry. Anal. Chem. 61: 2724–2730.PubMedCrossRefGoogle Scholar
  99. 75.
    HAYES, J.M., FREEMAN, K.H., RICCI, M.P., STUDLEY, S.A., MERRITT, D.A., BRZUZY, L., BRAND, W.A., HABFAST, K. 1989. Isotope-ratio-monitoring gas chromatography mass spectrometry. Proceeding of the 37th ASMS conference, 33–34.Google Scholar
  100. 76.
    EMMONS, G.T., PYREK, J. ST., DAM, R., MARTIN, M., KUDO, K., SCHROEPFER, JR., G.J. 1988. 5α-Cholest-8(14)-en-3β-ol-15-one, a potent regulator of cholesterol metabolism: occurrence in rat skin. J. Lipid Res. 29: 1039–1054.PubMedGoogle Scholar
  101. 77. (a).
    BUDZIKIEWICZ, H., DJERASSI, C., WILLIAMS, D.H. 1964. “Structure elucidation of Natural products by mass spectrometry”, Vol II, Holden-Day, San Francisco;Google Scholar
  102. 77(b).
    Zaretskii, Z.V., 1980. “Mass spectrometry of steroids”, Wiley, New York;Google Scholar
  103. 77(c).
    BUDZIKEWICZ, H. 1980. in “Biochemical applications of mass spectrometry”, 1st suppl., G. R. Waller, G. R. Dermer editors, Wiley, New York.Google Scholar
  104. 78.
    PYREK, J. ST. 1979. Structures of heliantriols B0, B0, B2 and A1, new pentacyclic triterpenes from Helianthus annuus L. and Calendula officinalis L. Polish J. Chem. 53: 2465–2490.Google Scholar
  105. 79.
    PYREK, J. ST. 1979. Mass spectral fragmentation of 16-oxo-tarax-20-ene derivatives. Polish J. Chem. 53: 1795–1798.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jan St. Pyrek
    • 1
  1. 1.Life Sciences Mass Spectrometry Facility and Division of Medicinal ChemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations