Immobilized Artificial Membrane Chromatography

Initial Studies Using Monomyristoylphosphatidylcholine as a Detergent for Solubilizing and Purifying Membrane Proteins
  • Whi-Gun Chae
  • Congwen Luo
  • Dong Mi Rhee
  • Christian R. Lombardo
  • Phil Low
  • Charles Pidgeon
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 25)


Immobilized artificial membranes (IAM) are solid-phase-membrane-mimetics.1 Synthesis of IAM particles entails bonding cell membrane lipid molecules to solid surfaces at high molecular surface densities.1–4 Thus IAM surfaces are intended to mimic the lipid environment of cell membranes and consequently the initial applications of IAM particles relate to endogenous solute—membrane interactions. Non-chromatographic applications of IAM include reconstitution of phospholipase D (unpublished observation), and the correlation of drug-binding to IAM with drug-transport through human skin.5 Chromatographic applications include the purification of cytochrome P-450 (submitted for publication and also refs.6,7), and the purification of other membrane proteins.8 Although both non-chromatographic and chromatographic applications are evolving, the most useful application (s) of IAM will be for the purification of membrane proteins.


Membrane Protein Myelin Basic Protein Critical Micelle Concen Coomassie Staining Detergent Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    PIDGEON, C., VENKATARUM, U.V. 1989. Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal. Biochem. 176: 36–47.PubMedCrossRefGoogle Scholar
  2. 2.
    MARKOVICH, R.J., STEVENS, J.M., PIDGEON, C. 1989. Fourier transform infrared assay of membrane lipids immobilized to silica: leaching and stability of immobilized artificial membrane-bonded phases. Anal. Biochem. 182: 237–244.PubMedCrossRefGoogle Scholar
  3. 3.
    STEVENS, J.M., MARKOVICH, J.M., PIDGEON, C. 1989. Characterization of immobilized artificial membrane HPLC columns using deoxynucleotides as model compounds. Biochrom. 4: 192–205.Google Scholar
  4. 4.
    PIDGEON, C. 1989. Solid phase membrane mimetics. Enzyme Microb. Technol. 12, 149–150.CrossRefGoogle Scholar
  5. 5.
    CHIKHALE, P., ALVAREZ, F.M., PIDGEON, C., WALTON, L., KEUSTER, J. 1989. Simulation of human skin permeation by immobilized artificial membrane HPLC columns. American Association of Pharmaceutical Scientists, 4th annual meeting, Atlanta, GA. Oct. 22–26. Pharm. Res. 6: 5–147.Google Scholar
  6. 6.
    OTTO, S., MARCUS, C., JEFCOATE, C.R. 1990. Characterization of novel ACTH-inducible cytochrome P-450 from rat adrenal microsomes. FASEB, annual meeting Washington, DC, pp. A753, Abstract 2821.Google Scholar
  7. 7.
    MARCUS, C.B., PIDGEON, C., OTTO, S., JEFCOATE, C.R. 1990. Rapid purification of functional cytochrome P-450 and P-450 reductase by high pressure liquid chromatography utilizing immobilized artificial membranes (IAM): A new solid phase membrane mimetic matrix. VIII International Symposium on Microsomes and Drug Oxidations. Karolinska, Stockholm Sweden, June 25–29, 1990, p. 230.Google Scholar
  8. 8.
    Hazelbrook, J.P., Coolbaugh, R.C., Marcus, C.B. 1989. Partial purification of kaurene oxidase from microsomal preparations of Gibberella fujikuroi.. American Society of Plant Physiology. National Meeting, Toronto, Ontario, July 30-Aug. 3. Plant Physiol. 89S: 107.Google Scholar
  9. 9.
    LAEMMLE, U., 1970. Cleavage of structural proteins during the assembly of The Head Bacteriophage T4. Nature 227: 680–685.CrossRefGoogle Scholar
  10. 10.
    AMES, G.F-L. 1974. Resolution of Bacterial Proteins by Polyacrylamide Gel Electrophoresis on Slabs. J. Biol. Chem: 249: 634–644.PubMedGoogle Scholar
  11. 11.
    GOW, A., AUTON, W., SMITH, R. 1990. Interactions between bovine myelin basic protein and zwitterionic lysophospholipids. Biochemistry. 29: 1142–1146.PubMedCrossRefGoogle Scholar
  12. 12.
    MENDZ, G.L., BROWN, L.R., MATERSON, R.E. 1990. Interactions of myelin basic protein with mixed dodecylphosphocholine/ palmito-yllysophosphatidic acid micelles. Biochemistry, 29: 2304–2311.PubMedCrossRefGoogle Scholar
  13. 13.
    MENDZ, G.L., MOORE, W.J., KAPLIN, I., CORNELL, B.A., SEPAROVIC, F., MILLER, D.J., BROWN, L.R. 1988. Characterization of dodecylphosphocholine/myelin basic protein complexes. Biochemistry 27:379–386.PubMedCrossRefGoogle Scholar
  14. 14.
    MENDZ, G.L., MOORE, W.J., BROWN, L.R., MARTENSON, R.E. 1984. Interaction of myelin basic protein with micelles of dodecylphosphocholine. Biochemistry 23: 6041–6046.PubMedCrossRefGoogle Scholar
  15. 15.
    ABU-HAMDIYYAH, M., MYSELS, K.L. 1967. The dialysis of sodium dodecylsulfate, its activity above the critical micelle concentration, and the phase separation model of micelle formation. J. Phys. Chem. 71: 418–426.CrossRefGoogle Scholar
  16. 16.
    STAGFORD, R.E., FANNI, T., DENNIS, E.A. 1989. Interfacial properties and critical micelle concentration of lysophospholipids. Biochemistry, 28: 5113–5120.CrossRefGoogle Scholar
  17. 17.
    GOW, A., WINDSOR, D.J., AND SMITH, R. 1987. Equilibrium binding of myristoyllyso-phosphatidylcholine to bovine myelin basic protein. An example of ligand-mediated acceptor association. Biochemistry 26: 982–987.PubMedCrossRefGoogle Scholar
  18. 18.
    DE PINTO, V., BENTZ, R., PALMIER, F. 1989. Interaction of non-classical detergents with mitochondrial porin. A new purification procedure and characterization of the pore-forming unit Eur. J. of Biochem. 183: 179–187.Google Scholar
  19. 19.
    GOODMAN, S.R., KREBS, K.E., WHITFIELD, C.F., REIDERER, B.M., ZAGON, I.S. 1988. Spectrin and related molecules, CRC Critical Reviews in Biochemistry, pp. 171–234.Google Scholar
  20. 20.
    BENNETT, V. 1983. Proteins involved in membrane-cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods Enzymol. 96: 313–324.PubMedCrossRefGoogle Scholar
  21. 21.
    DANILOV, Y., FENNELL, R., LING, E., COHEN, C.M. 1990. Selective modulation of band 4.1 binding to erythrocyte membranes by protein kinase C J. Biol. Chem. 265: 2556–2562.PubMedGoogle Scholar
  22. 22.
    MATSON, R.S., GOHEEN, S.C. 1986. Use of high-performance size exclusion chromatography to determine the extent of detergent solubilization of human erythrocyte ghosts. J. Chromatog. 359: 285–295.CrossRefGoogle Scholar
  23. 23.
    THOMAS, T.C., MCNAMEE, M.G. 1990 Purification of membrane proteins. Methods Enzymol. 182: 419–520.Google Scholar
  24. 24.
    JONES, AJ.S., RUMSBY, M.G. 1978. Interaction of the myelin basic protein with the anionic detergent sodium dodecyl sulfate. Biochem. J. 169: 281–285.PubMedGoogle Scholar
  25. 25.
    SMITH, R., MCDONALD, B J. 1979. Association of myelin basic protein with detergent micelles. Biochim. Biophys. Acta 554: 133–147.PubMedCrossRefGoogle Scholar
  26. 26.
    HARTSHORNE, R.P., CATTERALL, W.A. 1984. The sodium channel from rat brain, purification and subunit composition. J. Biol. Chem. 259: 1667–1675.PubMedGoogle Scholar
  27. 27.
    CATTERALL, W.A., MORROW, C.S., HARTSHORNE, R.P. 1979. Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J. Biol. Chem. 254: 11379–11387.PubMedGoogle Scholar
  28. 28.
    MERRIL, C.R., SWITZER, R.C., VAN KEUREN, M.L. 1979. Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Nad. Acad. Sci. U.S.A. 76: 4335–4339.CrossRefGoogle Scholar
  29. 29.
    SWITZER, R.C., MERRIL, C.R., SHIFRIN, S. 1979. A highly sensitive silver stain for detecting protein and peptides in Polyacrylamide gel electrophoresis. Anal. Biochem. 98: 231–237PubMedCrossRefGoogle Scholar
  30. 30.
    MERRIL, C.R., 1990. GEL STAINING TECHNIQUES. METHODS ENZYMOL. 182: 477–488.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Whi-Gun Chae
    • 1
  • Congwen Luo
    • 1
  • Dong Mi Rhee
    • 1
  • Christian R. Lombardo
    • 2
  • Phil Low
    • 2
  • Charles Pidgeon
    • 1
  1. 1.Department of Medicinal Chemistry and Pharmacognosy, School of PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations