Enantioselective Separations in Phytochemistry

  • Laurence B. Davin
  • Toshiaki Umezawa
  • Norman G. Lewis
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 25)


Plant biochemical pathways produce a host of phytochemicals whose stereochemical configurations are determined by precise enzymatic transformations. As a result, most naturally-occurring organic compounds have a certain chirality (or handedness), e.g., sugars, proteins, nucleic acids, polysaccharides, etc.1 This is true irrespective of whether the substances are cell wall polymers (e.g., cellulose) or are not (e.g., alkaloids, lignans, flavonoids, terpenoids, proanthocyanidins, etc.).


Racemic Mixture Chiral Stationary Phasis Chiral Separation Chiral Recognition Optical Isomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    LINDNER, W. 1987. Recent development in HPLC enantioseparation: A selected review. Chromatographia 24: 97–107.CrossRefGoogle Scholar
  2. 2.
    MILBORROW, B.V. 1974. Chemistry and biochemistry of abscisic acid. Recent Advances in Phytochemistry 7: 57–91.Google Scholar
  3. 3.
    RAHMAN, M.M.A., DEWICK, P.M., JACKSON, D.E., LUCAS, J.A. 1990. Lignans of Forsythia intermedia. Phytochemistry 29: 1971–1980.CrossRefGoogle Scholar
  4. 4.
    ISHII, H., ISHIKAWA, T., MIHARA, M., AKAIKE, M. 1983. Studies on the chemical constituents of rutaceous plants. XLVIII. The chemical constituents of Xanthoxylum ailanthoides, Sieb, et Zucc. [Fagara ailanthoides (Sieb, et Zucc.) Engl.]. (3) Isolation of the chemical constituents of the bark. Yakugaku Zasshi 103: 279–292.Google Scholar
  5. 5.
    NONHEBEL, H.M. 1987. Direct separation of (S)- and (R)-abscisic acid on a commercially available chiral high-performance liquid chromatographic column. J. Chromatogr. 402: 374–375.CrossRefGoogle Scholar
  6. 6.
    THOMPSON, J.A., HOLTZMAN, J.L., TSURU, M., LERMAN, C.L., HOLTZMAN, J.L. 1982. Procedure for the chiral derivatization and chromatographic resolution of R-(+)- and S-(-)-propranolol. J. Chromatogr. 238: 470–475.CrossRefGoogle Scholar
  7. 7.
    SOUTER, R.W. 1985. Chromatographic Separations of Stereoisomers. CRC Press, Inc. Boca Raton, Florida, 241 pp..Google Scholar
  8. 8.
    OKAMOTO, Y. 1987. Separate optical isomers by chiral HPLC. Chemtech. 176–181.Google Scholar
  9. 9.
    BLASCHKE, G. 1980. Chromatographic resolution of racemates. Angew. Chem. Int. Ed. Engl. 19: 13–24.CrossRefGoogle Scholar
  10. 10.
    UMEZAWA, T., DAVIN, L.B., YAMAMOTO, E., KINGSTON, D.G.I., LEWIS, N.G. 1990. Lignan biosynthesis in Forsythia species. J. Chem. Soc. Chem. Commun. 1405–1408.Google Scholar
  11. 11.
    UMEZAWA, T., DAVIN, L.B., LEWIS, N.G. 1990. Formation of the lignan, (-)-secoisolariciresinol, by cell-free extracts of Forsythia intermedia. Biochem. Biophys. Res. Commun. 171: 1008–1014.PubMedCrossRefGoogle Scholar
  12. 12.
    DAVIN, L.B., UMEZAWA, T., LEWIS, N.G. 1990. Biosynthesis of the Forsythia lignans. Bull. Soc. Groupe Polyphenols 15: 96–99.Google Scholar
  13. 13.
    WILLSTäTTER, R. 1904. Ueber einen Versuch zur Theorie des Färbens. Ber. Dtsch. Chem. Ges. 37: 3758–3760.CrossRefGoogle Scholar
  14. 14.
    HENDERSON, G.M., RULE, H.G. 1939. A new method of resolving a racemic compound. J. Chem. Soc. 1568–1573.Google Scholar
  15. 15.
    KOTAKE, M., SAKAN, T., NAKAMURA, N., SENOH, S. 1951. Resolution into optical isomers of some amino acids by paper chromatography. J. Am. Chem. Soc. 73: 2973–2974.CrossRefGoogle Scholar
  16. 16.
    GILAV, E., FEIBUSH, B., CHARLES-SIGLER, R. 1966. Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett. 10: 1009–1015.CrossRefGoogle Scholar
  17. 17.
    OKAMOTO, Y., ABURATANI, R. 1989. Separation of optical isomers by high-performance liquid chromatography. Polymer News 14: 295–301.Google Scholar
  18. 18.
    NATION, R.L. 1989. Enantioselective drug analysis: Problems and resolutions. Clin. Exp. Pharmacol. Physiol. 16: 471–477.PubMedCrossRefGoogle Scholar
  19. 19.
    SCHURIG, V., NOWOTNY, H.-P. 1990. Gas chromatographic separation of enantiomers on cyclodextrin derivatives. Angew. Chem. Int. Ed. Engl. 29: 939–957.CrossRefGoogle Scholar
  20. 20.
    GÜBITZ, G., JELLENZ, W., SCHÖNLEBER, D. 1980. Highperformance liquid chromatographic resolution of the optical isomers of D,L-tryptophane, D,L-5-hydroxytryptophan and D,L-dopa on cellulose columns. J. High. Resoln. Chromatogr. and Chromatogr. Commun. 3: 31–32.CrossRefGoogle Scholar
  21. 21.
    SHIBATA, T., OKAMOTO, I., ISHII, K. 1986. Chromatographic optical resolution on polysaccharides and their derivatives. J. Liq. Chromatogr. 9: 313–340.CrossRefGoogle Scholar
  22. 22.
    OKAMOTO, Y., KAWASHIMA, M., HATADA, K. 1984. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharides coated on silica gel. J. Am. Chem. Soc. 106: 5357–5359.CrossRefGoogle Scholar
  23. 23.
    ISAKSSON, R., ERLANDSSON, P., HANSSON, L., HOLMBERG, A., BERNER, S. 1990. Triacetylcellulose as a chiral stationary phase for high-performance liquid chromatography. J. Chromatogr. 498: 257–280.CrossRefGoogle Scholar
  24. 24.
    RIZZI, A.M. 1989. Evaluation of the optimization potential in high-performance liquid chromatographic separations of optical isomers with swollen microcrystalline cellulose triacetate. J. Chromatogr. 478: 101–119.Google Scholar
  25. 25.
    BLASCHKE, G. 1986. Chromatographic resolution of chiral drugs on polyamides and cellulose triacetate. J. Liq. Chromatogr. 9: 341–368.CrossRefGoogle Scholar
  26. 26.
    FRANCOTTE, E., STIERLIN, H., FAIGLE, J.W. 1985. Isolation and stereospecific determination of the enantiomers of oxindazac by direct liquid chromatographic resolution on triacetylcellulose. J. Chromatogr. 346: 321–331.PubMedCrossRefGoogle Scholar
  27. 27.
    ICHIDA, A., SHIBATA, T., OKAMOTO, I., YUKI, Y., NAMIKOSHI, H., TOGA, Y. 1984. Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19: 280–284.CrossRefGoogle Scholar
  28. 28.
    OKAMOTO, Y., KAWASHIMA, M., YAMAMOTO, K., HATADA, K. 1984. Useful chiral packing materials for high-performance liquid chromatographic resolution. Cellulose triacetate and tribenzoate coated on macroporous silica gel. Chem. Lett. 739–742.Google Scholar
  29. 29.
    KOLLER, H., RIMBÖCK, K.-H., MANNSCHRECK, A. 1983. High-pressure liquid chromatography on triacetylcellulose. Characterization of a sorbent for the separation of enantiomers. J. Chromatogr. 282: 89–94.CrossRefGoogle Scholar
  30. 30.
    RIZZI, A.M. 1990. Coupled column chromatography in chiral separations. I. Enantiomeric separation on swollen microcrystalline cellulose triacetate columns after a preseparation on a non-chiral alkylsilica column. J. Chromatogr. 513: 195–207.CrossRefGoogle Scholar
  31. 31.
    DäPPEN, R., ARM, H., MEYER, V.R. 1986. Applications and limitations of commercially available chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. 373: 1–20.CrossRefGoogle Scholar
  32. 32.
    OKAMOTO, Y., ABURATANI, R., HATADA, K. 1987. Chromatographic chiral resolution. XIV. Cellulose tribenzoate derivatives as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. 389: 95–102.CrossRefGoogle Scholar
  33. 33.
    OKAMOTO, Y., KAWASHIMA, M., HATADA, K. 1986. Chromatographic resolution. XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr. 363: 173–186.CrossRefGoogle Scholar
  34. 34.
    OKAMOTO, Y., ABURATANI, R., KAIDA, Y., HATADA, K. 1988. Direct optical resolution of carboxylic acids by chiral HPLC on tris(3,5-dimethylphenylcarbamate)s of cellulose and amylose. Chem. Lett 1125–1128.Google Scholar
  35. 35.
    OKAMOTO, Y., HATANO, K., ABURATANI, R., HATADA, K. 1989. Tris(4-t-butylphenylcarbamate)s of cellulose and amylose as useful chiral stationary phases for chromatographic optical resolution. Chem. Lett. 715–718.Google Scholar
  36. 36.
    OKAMOTO, Y., KAIDA, Y., HAYASHIDA, H., HATADA, K. 1990. Tris(l-phenylethylcarbamate)s of cellulose and amylose as useful chiral stationary phases for chromatographic optical resolution. Chem. Lett. 909–912.Google Scholar
  37. 37.
    RIMBÖCK, K.-H., CUYEGKENG, M.A., MANNSCHRECK, A. 1986. Triacetylcellulose on silica compared with non-dilute triacetylcellulose I as a high-performance liquid chromatographic sorbent. Chromatographia 21: 223–226.CrossRefGoogle Scholar
  38. 38.
    HERMANSSON, J., ERIKSSON, M. 1986. Direct liquid chromatographic resolution of acidic drugs using a chiral α1-acid glycoprotein column (Enantiopac®). J. Liq. Chromatogr. 9: 621–639.CrossRefGoogle Scholar
  39. 39.
    SCHILL, G., WAINER, I.W., BARKAN, S.A. 1986. Chiral separation of cationic drugs on an α1-acid glycoprotein bonded stationary phase. J. Liq. Chromatogr. 9: 641–666.CrossRefGoogle Scholar
  40. 40.
    ÖRN, G., LAHTONEN, K., JALONEN, H. 1990. Direct high-performance liquid chromatographic separation of (+)- and (-)-medetomidine hydrochloride with an α1-acid glycoprotein chiral column. J. Chromatogr. 506: 627–635.CrossRefGoogle Scholar
  41. 41.
    LE GARREC, L., DELEE, E., PASCAL, J.-C., JULLIEN, I. 1987. Direct separation of D- and L-sotalol mandelate and hydrochloride salts by high-performance liquid chromatography. J. Liq. Chromatogr. 10: 3015–3023.CrossRefGoogle Scholar
  42. 42.
    SCHILL, G., WAINER, I.W., BARKAN, S.A. 1986. Chiral separation of cationic and anionic drugs on an α1-acid glycoprotein-bonded stationary phase (Enantiopac®). II. Influence of mobile phase additives and pH on chiral resolution and retention. J. Chromatogr. 365: 73–88.PubMedCrossRefGoogle Scholar
  43. 43.
    DELEE, E., JULLIEN, I., LE GARREC, L. 1988. Direct high-performance liquid chromatographic resolution of dihydropyridine enantiomers. J. Chromatogr. 450: 191–197.PubMedCrossRefGoogle Scholar
  44. 44.
    ALLENMARK, S. 1986. Optical resolution by liquid chromatography on immobilized bovine serum albumin. J. Liq. Chromatogr. 9: 425–442.CrossRefGoogle Scholar
  45. 45.
    BOMGREN, B., ALLENMARK, S. 1986. Optical resolution of some derivatives of D,L-amino acids by chiral liquid chromatography. J. Liq. Chromatogr. 9: 667–672.CrossRefGoogle Scholar
  46. 46.
    ERLANDSSON, P., HANSSON, L., ISAKSSON, R. 1986. Direct analytical and preparative resolution of enantiomers using albumin adsorbed to silica as a stationary phase. J. Chromatogr. 370: 475–483.PubMedCrossRefGoogle Scholar
  47. 47.
    MIWA, T., MIYAKAWA, T., KAYANO, M., MIYAKE, Y. 1987. Application of an ovomucoid-conjugated column for the optical resolution of some pharmaceutically important compounds. J. Chromatogr. 408: 316–322.PubMedCrossRefGoogle Scholar
  48. 48.
    YUKI, H., OKAMOTO, Y., OKAMOTO, I. 1980. Resolution of racemic compounds by optically active poly(triphenylmethyl methacrylate). J. Am. Chem. Soc. 102: 6356–6358.CrossRefGoogle Scholar
  49. 49.
    OKAMOTO, Y., HONDA, S., OKAMOTO, I., YUKI, H. 1981. Novel packing material for optical resolution: (+)-Poly(triphenylmethyl methacrylate) coated on macroporous silica gel. J. Am. Chem. Soc. 103: 6971–6973.CrossRefGoogle Scholar
  50. 50.
    OKAMOTO, Y., YASHIMA, E., HATADA, K., MISLOW, K. 1984. Chromatographic resolution of perchlorotriphenylamine on (+)-poly(triphenylmethyl methacrylate). J. Org. Chem. 49: 557–558.CrossRefGoogle Scholar
  51. 51.
    OKAMOTO, Y., HATADA, K. 1986. Resolution of enantiomers by HPLC on optically active poly(triphenylmethyl methacrylate). J. Liq. Chromatogr. 9: 369–384.CrossRefGoogle Scholar
  52. 52.
    OKAMOTO, Y., ISHIKURA, M., HATADA, K., YUKI, H. 1983. Stereospecific and asymmetric polymerization of diphenylpyridyl-methyl methacrylates. Polym. J. 15: 851–853.CrossRefGoogle Scholar
  53. 53.
    OKAMOTO, Y., MOHRI, H., HATADA, K. 1988. Highly helix-sense-selective polymerization of diphenyl-2-pyridylmethyl methacrylate. Chem. Lett 1879–1882.Google Scholar
  54. 54.
    HÜNIG, S., KLAUNZER, N., GÜNTHER, K. 1989. Enantiomeric separation of α-substituted γ-butyrolactones on the chiral Polyacrylamide resin ChiraSpher®. J. Chromatogr. 481: 387–390.CrossRefGoogle Scholar
  55. 55.
    SAIGO, K., CHEN, Y., KUBOTA, N., TACHIBANA, K., YONEZAWA, N., HASEGAWA, M. 1986. New chiral stationary phases for the high-performance liquid chromatographic resolution of enantiomers. Chem. Lett. 515–518.Google Scholar
  56. 56.
    SAIGO, K., CHEN, Y., YONEZAWA, N., TACHIBANA, K., KANOE, T., HASEGAWA, M. 1985. New chiral stationary phases for optical resolution. Optically active polyamides having (-)-anri head-to-head coumarin dimer component. Chem. Lett. 1891–1894.Google Scholar
  57. 57.
    ROGOZHIN, S.V., DAVANKOV, V.A. 1971. Ligand chromatography on asymmetric complex-forming sorbents as a new method for resolution of racemates. J. Chem. Soc. Chem. Commun. 490.Google Scholar
  58. 58.
    DAVANKOV, V.A., SEMECHKIN, A.V. 1977. Ligand-exchange chromatography. J. Chromatogr. 141: 313–353.CrossRefGoogle Scholar
  59. 59.
    PIRKLE, W.H., POCHAPSKY, T.C. 1987. Chiral stationary phases for the direct LC separation of enantiomers. Adv. Chromatogr. 27: 73–127.Google Scholar
  60. 60.
    KICINSKI, H.G., KETTRUP, A. 1985. Determination of enantiomeric catecholamines by ligand-exchange chromatography using chemically modified L(+)-tartaric acid silica gel. Fresenius Z. Anal. Chem. 320: 51–54.CrossRefGoogle Scholar
  61. 61.
    ARMSTRONG, D.W., WARD, T.J., ARMSTRONG, R.D., BEESLEY, T.E. 1986. Separation of drug stereoisomers by the formation of β-cyclodextrin inclusion complexes. Science 232: 1132–1135.PubMedCrossRefGoogle Scholar
  62. 62.
    WARD, T.J., ARMSTRONG, D.W. 1986. Improved cyclodextrin chiral phases: A comparison and review. J. Liq. Chromatogr. 9: 407–423.CrossRefGoogle Scholar
  63. 63.
    FUJIMURA, K., KITAGAWA, M., TAKAYANAGI, H., ANDO, T. 1986. Optical resolution of some mandelic derivatives on a chemically bonded cyclodextrin stationary phase. J. Liq. Chromatogr. 9: 607–620.CrossRefGoogle Scholar
  64. 64.
    GEISSLINGER, G., DIETZEL, K., LOEW, D., SCHUSTER, O., RAU, G., LACHMANN, G., BRUNE, K. 1989. High-performance liquid chromatographic determination of ibuprofen, its metabolites and enantiomers in biological fluids. J. Chromatogr. 491: 139–149.PubMedCrossRefGoogle Scholar
  65. 65.
    SHINBO, T., YAMAGUCHI, T., NISHIMURA, K., SUGIURA, M. 1987. Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. J. Chromatogr. 405: 145–153.PubMedCrossRefGoogle Scholar
  66. 66.
    PIRKLE, W.H., DäPPEN, R. 1987. Reciprocity in chiral recognition. Comparison of several chiral stationary phases. J. Chromatogr. 404: 107–115.CrossRefGoogle Scholar
  67. 67.
    YANG, S.K., MUSHTAQ, M., WEEMS, H.B., FU, P.P. 1986. Chiral recognition mechanisms in the direct resolution of diol enantiomers of some polycyclic aromatic hydrocarbons by high-performance liquid chromatography with chiral stationary phases. J. Liq. Chromatogr. 9: 473–492.CrossRefGoogle Scholar
  68. 68.
    BAKER, J.K., CLARK, A.M., HUFFORD, C.D. 1986. Highperformance liquid Chromatographic separation of the enantiomers and diasteromers of primaquine and its metabolites. J. Liq. Chromatogr. 9: 493–509.CrossRefGoogle Scholar
  69. 69.
    OI, N., NAGASE, M., INDA, Y., DOI, T. 1983. High-performance liquid chromatographic separation of enantiomers on (1R,3R)-trans-chrysanthemic acid and its amide derivatives bonded to silica gel. J. Chromatogr. 259: 487–493.CrossRefGoogle Scholar
  70. 70.
    DOI, N., KITAHARA, H. 1986. Enantiomer separation by HPLC with some urea derivatives of L-valine as novel chiral stationary phases. J. Liq. Chromatogr. 9: 511–517.CrossRefGoogle Scholar
  71. 71.
    ROSINI, C., ALTEMURA, P., PINI, D., BERTUCCI, C., ZULLINO, G., SALVADORI, P. 1985. Cinchona alkaloids for preparing new, easily accessible chiral stationary phases. II. Resolution of bina-phthol derivatives on silica-supported quinine. J. Chromatogr. 348: 79–87.CrossRefGoogle Scholar
  72. 72.
    ROSINI, C., BERTUCCI, C., PINI, D., ALTEMURA, P., SALVADORI, P. 1987. Chiral stationary phases based on Cinchona alkaloids for the HPLC resolution of racemates. Chromatographia 24: 671–676.CrossRefGoogle Scholar
  73. 73.
    STUURMAN, H.W., KÖHLER, J., SCHOMBURG, G. 1988. HPLC-separation of enantiomers using quinine, covalently bonded to silica as stationary phase. Chromatographia 25: 265–271.CrossRefGoogle Scholar
  74. 74.
    NIMURA, N., TOYAMA, A., KINOSHITA, T. 1982. Optical resolution of D,L-proline by reversed-phase high-performance liquid chromatography using N-(p-toluenesulphonyl)-L-phenylalanine-copper(II) as a chiral additive. J. Chromatogr. 234:482–484.CrossRefGoogle Scholar
  75. 75.
    LAM, S.K. 1982. Improved enantiomeric resolution of D,L-Dns-amino acids. J. Chromatogr. 234: 485–488.CrossRefGoogle Scholar
  76. 76.
    MARCHELLI, R., DOSSENA, A., CASNATI, G., DALLAVALLE, F., WEINSTEIN, S. 1985. Chiral copper(II) complexes for the enantio-selective resolution of D,L-dansyl-amino acids by HPLC. Angew. Chem. Int. Ed. Engl. 24: 336–337.CrossRefGoogle Scholar
  77. 77.
    LAM, S., KARMEN, A. 1984. Stereoselective D- and L-amino acid analysis by high-performance liquid chromatography. J. Chromatogr. 289: 339–345.PubMedCrossRefGoogle Scholar
  78. 78.
    LAM, S., KARMEN, A. 1986. Resolution of optical isomers as the mixed chelate copper (II) complexes by reversed phase chromatography. J. Liq. Chromatogr. 9: 291–311.CrossRefGoogle Scholar
  79. 79.
    LINDNER, W.F., HIRSCHBÖCK, I. 1986. Chromatographic resolution of amino acids using tartaric acid mono-n-octylamide as mobile phase additive. J. Liq. Chromatogr. 9: 551–571.CrossRefGoogle Scholar
  80. 80.
    PETTERSSON, C., SCHILL, G. 1986. Separation of enantiomers in ion-pair chromatographic systems. J. Liq. Chromatogr. 9: 269–290.CrossRefGoogle Scholar
  81. 81.
    DEBOWSKI, J., JURCZAK, J., SYBILSKA, D. 1983. Resolution of some chiral mandelic acid derivatives into enantiomers by reversed-phase high-performance liquid chromatography via α- and β-cyclodextrin inclusion complexes. J. Chromatogr. 282: 83–88.CrossRefGoogle Scholar
  82. 82.
    SYBILSKA, D., ZUKOWSKI, J., BOJARSKI, J. 1986. Resolution of mephenytoin and some chiral barbiturates into enantiomers by reversed phase high-performance liquid chromatography with β-cyclodextrin inclusion complexes. J. Liq. Chromatogr. 9: 591–606.CrossRefGoogle Scholar
  83. 83.
    LIU, R.H., KU, W.W. 1983. Chiral stationary phases for the gas-liquid chromatographic separation of enantiomers. J. Chromatogr. 271: 309–323.CrossRefGoogle Scholar
  84. 84.
    FRANK, H., NICHOLSON, G.J., BAYER, E. 1977. Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J. Chromatogr. Sci. 15: 174–176.PubMedGoogle Scholar
  85. 85.
    KÖNIG, W.A., BENECKE, I., SIEVERS, S. 1981. New results in the gas chromatographic separation of enantiomers of hydroxy acids and carbohydrates. J. Chromatogr 217: 71–79.CrossRefGoogle Scholar
  86. 86.
    OI, N., DOI, T., KITAHARA, H., INDA, Y. 1982. Gas chromatographic determination of optical isomers of some carboxylic acids and amines with optically active stationary phases. J. Chromatogr 239: 493–498.CrossRefGoogle Scholar
  87. 87.
    KOSCIELSKI, T., SYBILSKA, D., JURCZAK, J. 1983. Separation of α- and β-pinene into enantiomers in gas-liquid chromatography systems via α-cyclodextrin inclusion complexes. J. Chromatogr 280: 131–134.CrossRefGoogle Scholar
  88. 88.
    KOSCIELSKI, T., SYBILSKA, D., BELNIAK, S., JURCZAK, J. 1984. Gas-liquid chromatography system with α-cyclodextrin as an analytical tool for the studies of stereoselective hydrogenation of α-pinene. Chromatographia 19: 292–296.CrossRefGoogle Scholar
  89. 89.
    KOSCIELSKI, T., SYBILSKA, D., BELNIAK, S., JURCZAK, J. 1986. Application of a gas-liquid chromatography system with oc-cyclodextrin for monitoring the stereochemical course of β-pinene hydrogenation. Chromatographia 21:413–416.CrossRefGoogle Scholar
  90. 90.
    KOSCIELSKI, T., SYBILSKA, D., JURCZAK, J. 1986. New chromatographic method for the determination of the enantiomeric purity of terpenoic hydrocarbons. J. Chromatogr. 364: 299–303.CrossRefGoogle Scholar
  91. 91.
    LINDSTRÖM, M., NORIN, T., VALTEROVA, I., VRKOC, J. 1990. Chirality of the monoterpene alarm pheromones of termites. Naturwissenschaften 77: 134–135.CrossRefGoogle Scholar
  92. 92.
    SCHURIG, V., SCHLEIMER, M., NOWOTNY, H.-P. 1990. Enantiomer analysis of a-pinene and limonene. Naturwissenschaften 77: 133–134.CrossRefGoogle Scholar
  93. 93.
    TAKEOKA, G., FLATH, R.A., MON, T.R., BUTTERY, R.G., TERANISHI, R., GÜNTERT, M., LAUTAMO, R., SZEJTLI, J. 1990. Further applications of permethylated β-cyclodextrin capillary gas chromatographic columns. J. High Resolut. Chromatogr. 13: 202–206.CrossRefGoogle Scholar
  94. 94.
    KÖNIG, W.A., KREBBER, R., WENZ, G. 1989. Cyclodextrins as chiral stationary phases in capillary gas chromatography. Part VI: Octakis (2,3,6-tro-o-pentyl)-γ-cyclodextrin. J. High Resolut. Chromatogr. 12: 790–792.CrossRefGoogle Scholar
  95. 95.
    KÖNIG, W.A., KREBBER, R., EVERS, P., BRUHN, G. 1990. Stereochemical analysis of constituents of essential oils and flavor compounds by enantioselective capillary gas chromatography. J. High Resolut. Chromatogr. 13: 328–332.CrossRefGoogle Scholar
  96. 96.
    MOSANDL, A., RETTINGER, K., FISCHER, K., SCHUBERT, V., SCHMARR, H.-G., MAAS, B. 1990. Stereoisomeric flavor compounds XLI: New applications of permethylated β-cyclodextrin phase in chiral CGC analysis. J. High Resolut. Chromatogr. 13: 382–385.CrossRefGoogle Scholar
  97. 97.
    SCHURIG, V., JUNG, M., SCHMALZING, D., SCHLEIMER, M., DUVEKOT, J., BUYTEN, J.C., PEENE, LA., MUSSCHE, P. 1990. CGC enantiomer separation on diluted cyclodextrin derivatives coated on fused silica columns. J. High Resolut. Chromatogr. 13: 470–474.CrossRefGoogle Scholar
  98. 98.
    MOSANDL, A., BRUCHE, G., ASKARI, C., SCHMARR, H.-G. 1990. Stereoisomeric flavor compounds XLIV: Enantioselective analysis of some important flavor molecules. J. High Resolut. Chromatogr. 13: 660–662.CrossRefGoogle Scholar
  99. 99.
    SCHURIG, V., BÜRKLE, W. 1982. Extending the scope of enantiomer resolution by complexation gas chromatography. J. Am. Chem. Soc. 104: 7573–7580.CrossRefGoogle Scholar
  100. 100.
    SCHURIG, V. 1988. Enantiomer analysis by complexation gas chromatography. Scope, merits and limitations. J. Chromatogr. 441: 135–153.CrossRefGoogle Scholar
  101. 101.
    SATTERWHITE, D.M., CROTEAU, R.B. 1987. Resolution of monoterpene enantiomers by gas chromatography. J. Chromatogr. 407: 243–252.PubMedCrossRefGoogle Scholar
  102. 102.
    SATTERWHITE, D.M., CROTEAU, R.B. 1988. Applications of gas chromatography to the study of terpenoid metabolism. J. Chromatogr. 452: 61–73.PubMedCrossRefGoogle Scholar
  103. 103.
    KÖNIG, W.A., FRANCKE, W., BENECKE, I. 1982. Gas chromatographic enantiomer separation of chiral alcohols. J. Chromatogr. 239: 227–231.CrossRefGoogle Scholar
  104. 104.
    KÖNIG, W.A., KREBBER, R., MISCHNICK, P. 1989. Cyclodextrins as chiral stationary phases in capillary gas chromatography. Part V: Octakis (3-O-butyryl-2,6-di-O-pentyl)-γ-cyclodextrin. J. High Resol. Chromatogr. 12: 732–738.CrossRefGoogle Scholar
  105. 105.
    VAUGHAN, G.T., MILBORROW, B.V. 1984. The resolution by HPLC of RS-[2–14C] Me 1′,4′-d.y-diol of abscisic acid and the metabolism of (-)-R- and (+)-S-abscisic acid. J. Exp. Bot. 35: 110–120.CrossRefGoogle Scholar
  106. 106.
    RAILTON, I.D. 1987. Resolution of the enantiomers of abscisic acid methyl ester by high-performance liquid chromatography using a stationary phase of cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel. J. Chromatogr. 402: 371–373.CrossRefGoogle Scholar
  107. 107.
    OKAMOTO, Y., ABURATANI, R., HATADA, K. 1988. Chromatographic resolution. XXI. Direct optical resolution of abscisic acid by high-performance liquid chromatography on cellulose tris(3,5-dimethylphenylcarbamate). J. Chromatogr. 448: 454–455.CrossRefGoogle Scholar
  108. 108.
    OKAMOTO, M., NAKAZAWA, H. 1990. Direct liquid chromatographic resolution of (R)- and (S)-abscisic acid using a chiral ovomucoid column. J. Chromatogr. 504: 445–449.CrossRefGoogle Scholar
  109. 109.
    OKAMOTO, M., NAKAZAWA, H. 1990. Optical resolution of abscisic acid metabolites using an ovomucoid-conjugated high-performance liquid chromatographic column. J. Chromatogr. 508: 217–219.CrossRefGoogle Scholar
  110. 110.
    GUICHARD, E., HOLLNAGEL, A., MOSANDL, A., SCHMARR, H.- G. 1990. Stereoisomeric flavor compounds, part XL: Stereo-differentiation of some chiral volatiles on a permethylated β-cyclodextrin phase. J. High Resolut. Chromatogr. 13: 299–301.CrossRefGoogle Scholar
  111. 111.
    ISOE, S., HYEON, S.B., SAKAN, T. 1969. Photo-oxidation of carotenoids. I. The formation of dihydroactinidiolide and β-ionone from β-carotene. Tetrahedron Lett 4: 279–281.CrossRefGoogle Scholar
  112. 112.
    GUICHARD, E., KUSTERMANN, A., MOSANDL, A. 1990. Chiral flavour compounds from apricots. Distribution of γ-lactone enantiomers and Stereodifferentiation of hydroactinidiolide using multi-dimensional gas chromatography. J. Chromatogr. 498: 396–401.CrossRefGoogle Scholar
  113. 113.
    MAOKA, T., KOMORI, T., MATSUNO, T. 1985. Direct diastereomeric resolution of carotenoids. I: 3-Hydroxy-4-oxo-β-end group. J. Chromatogr. 318: 122–124.CrossRefGoogle Scholar
  114. 114.
    BROUILLARD, R. 1988. Flavonoids and flower colour. In The Flavonoids, Advances in Research Since 1980. (J.B. Harborne, ed.) London: Chapman and Hall, pp. 525–538.Google Scholar
  115. 115.
    LAMB, C.J., LAWTON, M.A., DRON, M., DIXON, R.A. 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224.PubMedCrossRefGoogle Scholar
  116. 116.
    HEDIN, P.A., WAAGE, S.K. 1986. Roles of flavonoids in plant resistance to insects. In Progress in clinical and biological research. Vol. 213, Plant flavonoids in biology and medicine. (V. Cody, E. Middleton Jr., J.B. Harborne, eds.) New York: Alan R. Lin, pp. 87–100.Google Scholar
  117. 117.
    KRAUSE, M., GALENSA, R. 1988. Direct enantiomeric separation of racemic flavanones by high-performance liquid chromatography using cellulose triacetate as a chiral stationary phase. J. Chromatogr. 441: 417–422.CrossRefGoogle Scholar
  118. 118.
    OZAWA, T., OKAMOTO, A. 1988. Polyphenols from sago palm pith. Bull. Soc. Groupe Polyphenols 14: 134–137.Google Scholar
  119. 119.
    ANTUS, S., BAUER, R., GOTTSEGEN, A., WAGNER, H. 1990. Enantiomeric separation of racemic pterocarpans by high-performance liquid chromatography on (+)-poly(triphenylmethyl methacrylate)-coated silica gel. J. Chromatogr. 508: 212–216.CrossRefGoogle Scholar
  120. 120.
    CROMBIE, L. 1984. Rotenoids and their biosynthesis. Natural Product Reports 1: 3–19.CrossRefGoogle Scholar
  121. 121.
    ABIDI, S.L. 1987. Enantiomeric separation of rotenone and rotenolone on chiral stationary phases. J. Liq. Chromatogr. 10: 1085–1102.CrossRefGoogle Scholar
  122. 122.
    ABIDI, S.L. 1987. Chiral-phase high-performance liquid chromatography of rotenoid racemates. J. Chromatgr. 404: 133–143.CrossRefGoogle Scholar
  123. 123.
    OKAMOTO, Y., HONDA, S., HATADA, K., YUKI, H. 1985. Chromatographic resolution. IX. High-performance liquid chromato-graphic resolution of enantiomers on optically active poly(triphenyl-methyl methacrylate). J. Chromatogr. 350: 127–134.CrossRefGoogle Scholar
  124. 124.
    YAMAMOTO, E., BOKELMAN, G.H., LEWIS, N.G. 1989. Phenylpropanoid metabolism in cell walls. An overview. In: Plant Cell Wall Polymers, Biogenesis and Biodegradation. (N.G. Lewis, M.G. Paice, eds.), ACS Symposium Series 399, pp. 68–88.CrossRefGoogle Scholar
  125. 125.
    CACCAMESE, S. 1988. Retention behaviour of diastereomeric truxillic acid and truxinic diamides and separation of an enantiomeric pair in high-performance liquid chromatography. J. Chromatogr. 457: 366–371.CrossRefGoogle Scholar
  126. 126.
    RAO, C.B.S. 1978. Chemistry of Lignans. Andhra University Press, Visakhapatman, 377 pp.Google Scholar
  127. 127.
    MACRAE, W.D., TOWERS, G.H.N. 1984. Biological activities of lignans. Phytochemistry 6: 1207–1220.CrossRefGoogle Scholar
  128. 128.
    PONDIPOM, M.M., YUE, B.Z., BUGIANESI, R.L., BROOKER, D.R., CHANG, M.N., SHEN, T.Y. 1986. Total synthesis of kadsurenone and its analogs. Tetrahedron Lett. 27: 309–312.CrossRefGoogle Scholar
  129. 129.
    TANAHASHI, M., KARINA, M., HIGUCHI, T. 1987. Cleavage of lignin in wood by steam-explosion. Proceedings Fourth International Symposium on Wood and Pulping Chemistry. April 27–30, 1987, Paris. Eucepa-Tappi. pp. 343–347.Google Scholar
  130. 130.
    OZAWA, S., SASAYA, T. 1988. Extractives of Todomatsu Abies sachalinensis masters V. A novel dibenzylbutyrolactol lignan from the wood of Abies sachalinensis. Mokuzai Gakkashi 34: 851–857.Google Scholar
  131. 131.
    ARMSTRONG, D.W., HAN, S.M., HAN, Y.I. 1987. Separation of optical isomers of scopolamine, cocaine, homatropine and atropine. Anal. Biochem. 167: 261–264.PubMedCrossRefGoogle Scholar
  132. 132.
    SEEMAN, J.I., SECOR, H.V., ARMSTRONG, D.W., TIMMONS, K.D., WARD, T.J. 1988. Enantiomeric resolution and chiral recognition of racemic nicotine and nicotine analogues by β-cyclodextrin complexation. Structure-enantiomeric resolution relationships in host-guest interactions. Anal. Chem. 60: 2120–2127.PubMedCrossRefGoogle Scholar
  133. 133.
    AMSTRONG, D.W., SPINO, L.A., HAN, S.M., SEEMAN, J.I., SECOR, H.V. 1987. Enantiomeric resolution of racemic nicotine and nicotine analogues by microcolumn liquid chromatography with β-cyclodextrin inclusion complexes. J. Chromatogr. 411: 490–493.CrossRefGoogle Scholar
  134. 134.
    ARAI, T., MATSUDA, H., OIZUMI, H. 1989. Determination of optical purity by high-performance liquid chromatography on chiral stationary phases: Pantothenic acid and related compounds. J. Chromatogr. 474: 405–410.CrossRefGoogle Scholar
  135. 135.
    GUNSTONE, F.D., HARWOOD, J.L., PADLEY, F.B. 1986. The Lipid Handbook. New York: Chapman and Hall, pp. 19–20.Google Scholar
  136. 136.
    TAKAGI, T., ITABASHI, Y., TSUDA, T. 1989. High-performance liquid chromatographic separation of 2-hydroxy fatty acid enantiomers on a chiral slurry-packed capillary column. J. Chromatogr Sci. 27: 574–577.CrossRefGoogle Scholar
  137. 137.
    GÜBITZ, G. 1986. Direct separation of enantiomers by high performance ligand exchange chromatography on chemically bonded chiral phases. J. Liq. Chromatogr. 9: 519–535.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Laurence B. Davin
    • 1
  • Toshiaki Umezawa
    • 2
  • Norman G. Lewis
    • 1
  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA
  2. 2.Wood Research InstituteKyoto UniversityUji, Kyoto 611Japan

Personalised recommendations