Advertisement

Quantitative Structure-Activity Relationship Analysis of Natural Products: Phototoxic Thiophenes

  • Robin J. Marles
  • J. Thor Arnason
  • R. Lilia Compadre
  • Cesar M. Compadre
  • Chantal Soucy-Breau
  • Bella Mehta
  • Peter Morand
  • Robert W. Redmond
  • J. C. Scaiano
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 25)

Abstract

The wide diversity of secondary metabolites known to exist throughout the plant kingdom has been partially attributed to plant-pest coevolution,1,2 although aspects of the process remain controversial.3 It is also known that fungal infections can elicit the production and accumulation of toxic plant secondary metabolites.4 The elaborate design of chemical defences in plants can involve mixtures of related structures in one biosynthetic class or multiple lines of chemical defence in a single plant species.5 For example, Chrysanthemum spp. contain several phototoxic thiophenes and acetylenes, cytotoxic sesquiterpene lactones, and insecticidal Pyrethrins and isobutylamides.6

Keywords

Partition Coefficient Singlet Oxygen Brine Shrimp Mosquito Larva Sesquiterpene Lactone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BERENBAUM, M. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37: 163–179.CrossRefGoogle Scholar
  2. 2.
    EHRLICH, P. R., RAVEN, P.A. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.CrossRefGoogle Scholar
  3. 3.
    STRONG, D.R., LAVVTON, J.H., SOUTHWOOD, R. 1984. Insects on Plants: Community Patterns and Mechanisms. Harvard University Press, Cambridge, Massachusetts, pp. 313.Google Scholar
  4. 4.
    KOURANY, E., ARNASON, J.T., SCHNEIDER, E. 1988. Accumulation of phototoxic thiophenes in Tagetes erecta (Asteraceae) elicited by Fusarium oxysporum. Physiol. Molec. Plant Pathol. 33: 287–297.CrossRefGoogle Scholar
  5. 5.
    BERENBAUM, M. 1985. Brementown revisited: interactions among allelochemicals in plants. In: Chemically Mediated Interactions Between Plants and Other Organisms, G.A. Cooper-Driver, T. Swain, E.A. Conn, eds., Rec. Adv. Phytochem. 19: 139–169.Google Scholar
  6. 6.
    WAGNER, H. 1977. Pharmaceutical and economic uses of the Compositae. In: The Biology and Chemistry of the Compositae, vol. 1, V.H. Heywood, J.B. Harborne, B.L. Turner, eds., Academic Press, London, pp. 411–433.Google Scholar
  7. 7.
    HALL, I.H., LEE, K.H., STARNES, C.O., SUMIDA, Y., WU, R.Y., WADDELL, T.G., COCHRAN, J.W., GERHART, K.G. 1979. Anti-inflammatory activity of sesquiterpenelactones and related compounds. J. Pharm. Sci. 68: 537–542.PubMedCrossRefGoogle Scholar
  8. 8.
    HALL, LH., LEE, K.H., STARNES, CO., MURAOKA, O., SUMIDA, Y., WADDELL, T.G. 1980. Antihyperlipidemic activity of sesquiterpene lactones and related compounds. J. Pharm. Sci. 69: 694–697.PubMedCrossRefGoogle Scholar
  9. 9.
    HALL, I.H., LEE, K.H., MAR, E.C., STARNES, C.O., WADDELL, T.G. 1977. Antitumor agents. 21. A proposed mechanism for inhibition of cancer growth by tenulin and helenalin and related cyclopentenones. J. Med. Chem. 20: 333–337.PubMedCrossRefGoogle Scholar
  10. 10.
    SELASSIE, C.D., HANSCH, C., KHWAJA, T.A. 1989. Structure-activity relationships of antineoplastic agents in multidrug resistance. J. Med. Chem. 33: 1914–1919.CrossRefGoogle Scholar
  11. 11.
    BENIGNI, R., ANDREOLI, C., GIULIANI, A. 1989. Interrelationships among carcinogenicity, mutagenicity, acute toxicity, and chemical structure in a genotoxicity data base. J. Toxicol. Environ. Health 27: 1–20.PubMedCrossRefGoogle Scholar
  12. 12.
    ENSLEIN, K., CRAIG, P.N. 1982. Carcinogenesis: a predictive structure-activity model. J. Toxicol. Environ. Health 10: 521–530.PubMedCrossRefGoogle Scholar
  13. 13.
    MATSUDA, K., HAMADA, M., NISHIMURA, K., FUJITA, T. 1990. Quantitative structure-activity studies of pyrethroids. 21. Substituted benzyl esters of “kadethric” acid and depolarization of the axonal membrane of crayfish. Pestic. Biochem. Physiol. 37: 200–209.CrossRefGoogle Scholar
  14. 14.
    NISHIMURA, K., KUROGOCHI, N., FUJITA, T. 1990. Quantitative structure-activity studies of pyrethroids. 22. Physiochemical substituent effects on insecticidal activity of meta-substituted benzyl chrysanthemates and their dibromovinyl analogs. Pestic. Biochem. Physiol. 37:41–52.CrossRefGoogle Scholar
  15. 15.
    MARTIN, Y.C. 1978. Quantitative Drug Design: A Critical Introduction. Marcel Dekker, New York, pp. 425.Google Scholar
  16. 16.
    HANSCH, C., KIM, D., LEO, A.J., NOVELLINO, E., SILIPO, C., VITTORIA, A. 1989. Toward a quantitative comparative toxicology of organic compounds. CRC Crit. Rev. Toxicol. 19: 185–226.CrossRefGoogle Scholar
  17. 17.
    KUBINYI, H. 1977. Quantitative structure-activity relationships. 7. Thebilinear model, a new model for nonlinear dependence of biological activity on hydrophobiccharacter. J. Med. Chem. 20:625–629.PubMedCrossRefGoogle Scholar
  18. 18.
    FINNEY, D.J. 1964. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd ed., University Press, Cambridge.Google Scholar
  19. 19.
    HANSCH, C., KLEIN, T.E. 1986. Molecular graphics and QSAR in the study of enzyme-ligand interactions. On the definition of bio-receptors. Acc. Chem. Res. 19: 392–400.CrossRefGoogle Scholar
  20. 20.
    COMPADRE, C.M., HANSCH, C., KLEIN, T.E., LANGRIDGE, R. 1990. The structure-activity relationships of the papain hydrolysis of N-benzoylglycine esters. Biochim. Biophys. Acta 1038:158–163.PubMedCrossRefGoogle Scholar
  21. 21.
    KUBINYI, H. 1979. Lipophilicity and drug activity. Prog. Drug Res. 23: 97–198.PubMedGoogle Scholar
  22. 22.
    HANSCH, C., LEO, A. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley and Sons, New York, pp. 339.Google Scholar
  23. 23.
    LEO, A., HANSCH, C., ELKINS, D. 1971. Partition coefficients and their uses. Chem. Rev. 71: 525–616.CrossRefGoogle Scholar
  24. 24.
    PURCELL, W.P., BASS, G.E., CLAYTON, J.M. 1973. Strategy of drug design: a guide to biological activity. John Wiley and Sons, New York, pp. 193.Google Scholar
  25. 25.
    ELLGEHAUSEN, H., D’HONDT, C., FUERER, R. 1981. Reversed-phase chromatography as a general method for determining octan-1-ol/water partition coefficients. Pestic. Sei. 12: 219–227.CrossRefGoogle Scholar
  26. 26.
    KONEMANN, H., ZELLE, R., BUSSER, F. 1979. Determination of log Poct, values of chloro-substituted benzenes, toluenes and anilines by high-performance liquid chromatography on ODS-silica. J. Chromatog. 178: 559–565.CrossRefGoogle Scholar
  27. 27.
    ANONYMOUS. 1989. MedChem software manuals. Daylight Chemical Information Systems, Inc., Claremont, California, pp. 75 (CLOGPS), pp. 16 (CMR).Google Scholar
  28. 28.
    DUNN, W J., III. 1977. Molar refractivity as an independent variable in quantitative structure-activity studies. Eur. J. Med. Chem. 12: 109–112.Google Scholar
  29. 29.
    HAMMETT, LP. 1970. Physical Organic Chemistry: Reaction Rates, Equilibria, and Mechanisms, 2nd ed. McGraw-Hill Book Company, New York, pp. 420.Google Scholar
  30. 30.
    SHORTER, J. 1982. Correlation Analysis of Organic Reactivity, With Particular Reference to Multiple Regression. Research Studies Press. John Wiley and Sons, Chichester, pp. 235.Google Scholar
  31. 31.
    HANSCH, C., MUIR, R.M., FUJITA, T., MALONEY, P.P., GEIGER, F., STREICH, M. 1963. The correlation of biological activity of plant growth regulators and Chloromycetin derivatives with Hammett constants and partition coefficients. J. Amer. Chem. Soc. 85: 2817–2824.CrossRefGoogle Scholar
  32. 32.
    CHARTON, M. 1971. The quantitative treatment of the ortho effect. Prog. Phys. Org. Chem. 8: 235–317.CrossRefGoogle Scholar
  33. 33.
    FUJITA, T., NISHIOKA, T. 1976. The analysis of the ortho effect. Prog. Phys. Org. Chem. 112: 49–89.CrossRefGoogle Scholar
  34. 34.
    COMPADRE, R.L., DEBNATH, A.K., SHUSTERMAN, A.J., HANSCH, C. 1990. LUMO energies and hydrophobicity as determinants of mutagenicity by nitroaromatic compounds in Salmonella typhimurium. Envir. Molec. Mutagen. 15: 44–55.CrossRefGoogle Scholar
  35. 35.
    ARNASON, J.T., PHILOGENE, B.J.R., MORAND, P., IMRIE, K., IYENGAR, S., DUVAL, F., SOUCY-BREAU, C., SCAIANO, J.C., WERSTIUK, N.H., HASSPIELER, B., DOWNE, A.E.R. 1989. Naturally Occurring and Synthetic Thiophenes as Photoactivated Insecticides. In: Insecticides of plant origin, J.T. Arnason, B.J.R. Philogene, P. Morand, eds., ACS Symposium Series 387, American Chemical Society, Washington, D.C., pp. 164–172.CrossRefGoogle Scholar
  36. 36.
    IYENGAR, S., ARNASON, J.T., PHILOGENE, B.J.R., MORAND, P., WERSTIUK, N.H., TIMMINS, G. 1990. Toxicokinetics of the phototoxic allelochemical a-terthienyl in three herbivorous lepidoptera. Pestic. Biochem. Physiol. 29: 1–9.CrossRefGoogle Scholar
  37. 37.
    BERENBAUM, M.R. 1987. Charge of the Light Brigade: phototoxicity as a defense against insects. In: Light-activated pesticides, J.R. Heitz, K.R. Downum, eds., ACS Symposium Series 339, American Chemical Society, Washington, D.C., pp. 206–216.CrossRefGoogle Scholar
  38. 38.
    TOWERS, G.H.N., HUDSON, J.B. 1987. Potentially useful antimicrobial and antiviral phototoxins from plants. Photochem. Photobiol. 46: 61–66.PubMedCrossRefGoogle Scholar
  39. 39.
    HUDSON, J.B., TOWERS, G.H.N. 1988. Antiviral properties of photosensitizers. Photochem. Photobiol. 48: 289–296.PubMedCrossRefGoogle Scholar
  40. 40.
    HASSPIELER, B.M., ARNASON, J.T., DOWNE, A.E.R. 1988. Toxicity, localization, and elimination of the phototoxin, alpha-terthienyl, in mosquito larvae. J. Amer. Mosquito Control Assoc. 4: 479–484.Google Scholar
  41. 41.
    PHILOGENE, B.J.R., ARNASON, J.T., BERG, C.W., DUVAL, F., CHAMPAGNE, D., TAYLOR, R.G., LEITCH, L.C., MORAND, P. 1985. Synthesis and evaluation of the naturally occurring phototoxin, alpha-terthienyl, as a control agent for larvae of Aedes intrudens, Aedes atropalpus (Diptera: Culicidae) and Simulium verecundum (Diptera: Simuliidae). J. Econ. Entomol. 78: 121–126.PubMedGoogle Scholar
  42. 42.
    McLACHLAN, D., ARNASON, T., LAM, J. 1984. The role of oxygen in photosensitizations with polyacetylenes and thiophene derivatives. Photochem. Photobiol. 39: 177–182.CrossRefGoogle Scholar
  43. 43.
    SCAIANO, J.C., MACEACHERN, A., ARNASON, J.T., MORAND, P., WEIR, D. 1987. Singlet oxygen generating efficiency of a-terthienyl and some of its synthetic analogues. Photochem. Photobiol. 46: 193–199.CrossRefGoogle Scholar
  44. 44.
    Scaiano, J.C., Redmond, R.W., Mehta, B., Arnason, J.T. 1990. Efficiency of the photoprocesses leading to singlet oxygen (1Dg) generation by a-terthienyl: optical absorption, optoacoustic calorimetry and infrared luminescence studies. Photochem. Photobiol. 52: 655–659.PubMedCrossRefGoogle Scholar
  45. 45.
    Downum, K.R., Rodriguez, E. 1986. Toxicological action and ecological importance of plant photosensitizers. J. Chem. Ecol. 12: 823–834.CrossRefGoogle Scholar
  46. 46.
    Arnason, J.T., Philogene, B.J.R., Berg, C., Maceachern, A., Kaminski, J., Leitch, L. C., Morand, P., Lam, J. 1986. Phototoxicity of naturally occurring and synthetic thiophene and acetylene analogues to mosquito larvae. Phytochemmstry 25: 1609–1611.CrossRefGoogle Scholar
  47. 47.
    Mclachlan, D., Arnason, T., Lam, J. 1986. Structure-function relationships in the phototoxicity of acetylenes from the Asteraceae. Biochem. System. Ecol. 14: 17–23.CrossRefGoogle Scholar
  48. 48.
    Marchant, Y.Y., Cooper, G.K. 1987. Structure and function relationships in polyacetylene photoactivity. In: Lightactivated Pesticides, J.R. Heitz, K.R. Downum, eds., ACS Symposium Series 339, American Chemical Society, Washington, D.C., pp. 241–254.CrossRefGoogle Scholar
  49. 49.
    Michael, A.S., Thompson, C.G., Abramovitz, M. 1956. Artemia salina as a test organism for bioassay. Science 123: 464.PubMedCrossRefGoogle Scholar
  50. 50.
    Alkofahi, A., Rupprecht, J.K., Anderson, J.E., Mclaughlin, J.L., Mikolajczak, K.L., Scott, B.A. 1989. Search for new pesticides from higher plants. In: Insecticides of Plant Origin, J.T. Arnason, B.J.R. Philogene, P. Morand, eds., ACS Symposium Series 387, American Chemical Society, Washington, D.C., pp. 25–43.CrossRefGoogle Scholar
  51. 51.
    Kinghorn, A.D., Jawad, F.H., Doorenbos, N.J. 1978. Structure-activity relationship of grayanotoxin derivatives using a tetrodotoxin-antagonized spasmodic response of brine shrimp larvae Artemia salina. Toxicon 16: 227–234.PubMedCrossRefGoogle Scholar
  52. 52.
    Maceachern, A., Soucy, C., Leitch, L.C., Arnason, J.T., Morand, P. 1988. Synthesis and characterization of alkyl-, halo-and hetero-substituted derivatives of the potent phototoxina-terthienyl. Tetrahedron 44: 2403–2412.CrossRefGoogle Scholar
  53. 53.
    Evans, C., Weir, D., Scaiano, J.C., Maceachern, A., Arnason, J.T., Morand, P., Hollebone, B., Leitch, L.C., Philogene, B.J.R. 1986. Photochemistry of the botanical phototoxin, a-terthienyl and some related compounds. Photochem. Photobiol. 44: 441–451.CrossRefGoogle Scholar
  54. 54.
    Rodgers, M.A.J., Snowden, P.T. 1982. Lifetime of 02(lDg) in liquid water as determined by time-resolved infrared luminescence measurements. J. Amer. Chem. Soc. 104: 5541–5543.CrossRefGoogle Scholar
  55. 55.
    Keene, J.P., Kessel, D., Land, E.J., Redmond, R.W., Truscott, T.G. 1986. Direct detection of singlet oxygen sensitized by haematoporphyrin and related compounds. Photochem. Photobiol. 43: 117–120.PubMedCrossRefGoogle Scholar
  56. 56.
    Jagger, J. 1977. Phototechnology and biological experimentation. In: The Science of Photobiology, (K.C. Smith, ed.), Plenum Press, New York, pp. 1–28.CrossRefGoogle Scholar
  57. 57.
    Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E., Mclaughlin, J.L. 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 45(1): 31–34.CrossRefGoogle Scholar
  58. 58.
    Arnason, J.T., Marles, R., Aucoin, R.R. 1991. Isolation and biological activity of plant derived phototoxins. In: Photobiological Techniques, R. Douglas, P. Mathis, R. Pottier, D. Valenzeno, eds., NATO Advanced Study Institute.Google Scholar
  59. 59.
    Fields, P.G., Arnason, J.T., Philogene, B.J.R., Aucoin, R.R., Morand, P., Soucy, C. In press. Phototoxins as insecticides and natural plant defences. Can. Entomol.Google Scholar
  60. 60.
    Kagan, J., Kagan, P.A., Buhse, H.Ejr. 1984. Light-dependent toxicity of a-terthienyl and anthracene toward late embryonic stages of Rana pipiens. J. Chem. Ecol. 10: 1115–1122.CrossRefGoogle Scholar
  61. 61.
    Kagan, J., Kagan, E.D., Seigneurie, E. 1986. Alpha-terthienyl, a powerful fish poison with light-dependent activity. Chemosphere 15:49–57.CrossRefGoogle Scholar
  62. 62.
    Kagan, J., Bennett, W.J., Kagan, E.D., Maas, J.L., Sweeney, S.A., Kagan, I.A., Seigneurie, E., Bindo-Kas, V. 1987. a-Terthienyl as a photoactiveinsecticide: toxic effects on nontarget organisms. In: Light-activated pesticides, J.R. Heitz, K.R. Downum, eds., ACS Symposium Series 339, American Chemical Society, Washington, D.C., pp. 176–191.CrossRefGoogle Scholar
  63. 63.
    Philogene, B.J.R., Arnason, J.T., Berg, C.W., Duval, F., Morand, P. 1986. Efficacy of the plant phototoxin a-terthienyl against Aedes intrudens and effects on nontarget organisms. J. Chem. Ecol. 12: 893–898.CrossRefGoogle Scholar
  64. 64.
    Arnason, J.T., Philogene, B.J.R., Morand, P., Scaiano, J.C., Werstiuk, N., Lam, J. 1987. Thiophenesand acetylenes: phototoxic agents to herbivorous and blood-feeding insects. In: Light-activated pesticides, J.R. Heitz, K.R. Downum, eds., ACS Symposium Series 339, American Chemical Society, Washington, D.C., pp. 255–264.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robin J. Marles
    • 1
  • J. Thor Arnason
    • 1
  • R. Lilia Compadre
    • 2
  • Cesar M. Compadre
    • 2
  • Chantal Soucy-Breau
    • 3
  • Bella Mehta
    • 3
  • Peter Morand
    • 3
  • Robert W. Redmond
    • 4
  • J. C. Scaiano
    • 4
  1. 1.Ottawa-Carleton Institute of BiologyUniversity of OttawaOttawaCanada
  2. 2.Department of Biopharmaceutical Sciences, College of PharmacyUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Ottawa-Carleton Institute of ChemistryUniversity of OttawaOttawaCanada
  4. 4.Steacie Institute for Molecular SciencesNational Research CouncilOttawaCanada

Personalised recommendations