Biosynthetic Methods for Plant Natural Products: New Procedures for the Study of Glandular Trichome Constituents

  • Jonathan Gershenzon
  • David McCaskill
  • Jean Rajaonarivony
  • Charles Mihaliak
  • Frank Karp
  • Rodney Croteau
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 25)


Many types of plant natural products, including terpenoids, phenolics and sucrose esters, accumulate in modified epidermal hairs known as glandular trichomes.1–4 These substances have long been of interest to phytochemists because of their structural complexity and their importance as flavoring, perfumery and pharmaceutical agents. In addition, a number of glandular trichome constituents are thought to have a role in plant defense because of their toxicity and deterrency to herbivorous insects, and their anti-fungal and antibacterial activity.2–5


Secretory Cell Glandular Trichome Sucrose Ester Isopentenyl Pyrophosphate Plant Natural Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FAHN, A. 1979. Secretory Tissues in Plants. Academic Press, London, pp. 302.Google Scholar
  2. 2.
    STIPANOVIC, R.D. 1983. Function and chemistry of plant trichomes and glands in insect resistance. In: Plant Resistance to Insects, P. A. Hedin, ed., American Chemical Society Symposium Series, No. 208, American Chemical Society, Washington, DC, pp. 69–100.CrossRefGoogle Scholar
  3. 3.
    KELSEY, R.G., REYNOLDS, G.W., RODRIGUEZ, E. 1984. The chemistry of biologically active constituents secreted and stored in plant glandular trichomes. In: Biology and Chemistry of Plant Trichomes. (E. Rodriguez, P.L. Healy, I. Mehta, eds.) Plenum Press, New York, pp. 187–241.Google Scholar
  4. 4.
    DUFFEY, S. S. 1986. Plant glandular trichomes: Their partial role in defence against insects. In: Insects and the Plant Surface. (B. Juniper, R. Southwood, eds.) Edward Arnold, London, pp. 151–172.Google Scholar
  5. 5.
    GREGORY, P., AVé, D.A., BOUTHYETTE, P.Y., TINGEY, W.M. 1986. Insect-defensive chemistry of potato glandular trichomes. In: Insects and the Plant Surface. (B. Juniper, R. Southwood, eds.) Edward Arnold, London, pp. 173–183.Google Scholar
  6. 6.
    SCHNEPF, E. 1974. Gland cells. In: Dynamic Aspects of Plant Ultra-structure. (A.W. Roberts, ed.) McGraw-Hill, New York, pp. 331–357.Google Scholar
  7. 7.
    KEENE, C.K., WAGNER, G.J. 1985. Direct demonstration of duva-trienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 79: 1026–1032.PubMedCrossRefGoogle Scholar
  8. 8.
    KANDRA, L., WAGNER, G.J. 1988. Studies of the site and mode of biosynthesis of tobacco trichome exudate components. Arch. Biochem. Biophys. 265: 425–432.PubMedCrossRefGoogle Scholar
  9. 9.
    GERSHENZON, J., MAFFEI, M., CROTEAU, R. 1989. Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89: 1351–1357.PubMedCrossRefGoogle Scholar
  10. 10.
    CROTEAU, R., WINTERS, J.N. 1982. Demonstration of the intercellular compartmentation of l-menthone metabolism in peppermint (Mentha piperita) leaves. Plant Physiol. 69: 975–977.PubMedCrossRefGoogle Scholar
  11. 11.
    GERSHENZON, J., DUFFY, M.A., KARP, F., CROTEAU, R. 1987. Mechanized techniques for the selective extraction of enzymes from plant epidermal glands. Anal. Biochem. 163: 159–164.PubMedCrossRefGoogle Scholar
  12. 12.
    AMELUNXEN, F. 1964. Elektronenmikroskopische Untersuchungen an den Drüsenhaaren von Mentha piperita L. Planta Med. 12: 121–139.CrossRefGoogle Scholar
  13. 13.
    SCHNEPF, E. 1972. Tubuläres endoplasmatisches Reticulum in Drüsen mit lipophilen Ausscheidungen von Ficus, Ledum und Salvia. Biochem. Physiol. Pflanzen 163: 113–125.Google Scholar
  14. 14.
    HEINRICH, G. 1973. Entwicklung, Feinbau und Ölgehalt der Drüsenschuppen von Monarda fistulosa. Planta Med. 23: 154–166.PubMedCrossRefGoogle Scholar
  15. 15.
    BOSABALIDIS, A., TSEKOS, I. 1982. Glandular scale development and essential oil secretion in Origanum dictamnus L. Planta 156: 496–504.CrossRefGoogle Scholar
  16. 16.
    BRUNI, A., MODENESI, P. 1983. Development, oil storage and dehiscence of peltate trichomes in Thymus vulgaris (Lamiaceae). Nord. J. Bot. 3:245–251.CrossRefGoogle Scholar
  17. 17.
    BOSABALIDIS, A.M., TSEKOS, I. 1984. Glandular hair formation in Origanum species. Ann. Bot. 53: 559–563.Google Scholar
  18. 18.
    WERKER, E., RAVID, U., PUTIEVSKY, E. 1985. Structure of glandular hairs and identification of the main components of their secreted material in some species of the Labiatae. Israel J. Bot. 34: 31–45.Google Scholar
  19. 19.
    WERKER, E., RAVID, U., PUTIEVSKY, E. 1985. Glandular hairs and their secretions in the vegetative and reproductive organs of Salvia sclarea and S. dominica. Israel J. Bot. 34: 239–252.Google Scholar
  20. 20.
    CANTINO, P.D. 1990. The phylogenetic significance of stomata and trichomes in the Labiatae and Verbenaceae. J. Arnold Arboretum 71: 323–370.Google Scholar
  21. 21.
    AMELUNXEN, F. 1965. Electronenmikroskopische Untersuchungen an den Drüsenschuppen von Mentha piperita L. Planta Med. 13: 457–473.CrossRefGoogle Scholar
  22. 22.
    VENKATACHALAM, K.V., KJONAAS, R., CROTEAU, R. 1984. Development and essential oil content of secretory glands of sage (Salvia officinalis). Plant Physiol. 76: 148–150.PubMedCrossRefGoogle Scholar
  23. 23.
    ABU-ASAB, M. S., CANTINO, P.D. 1987. Phylogenetic implications of leaf anatomy in subtribe Melittidinae (Labiatae) and related taxa. J. Arnold Arboretum 68: 1–34.Google Scholar
  24. 24.
    BOSABALIDIS, A.M. 1990. Glandular trichomes in Satureja thymbra leaves. Ann. Bot. 65: 71–78.Google Scholar
  25. 25.
    COUDERC-LE VAILLANT, M., SEGUR-FANTINO, N., COUDERC, H. 1990. Étude phytodermologique de Lavandula angustifolia Mill. Rev. Cytol. Biol. Veget.-Bot. 13: 75–88.Google Scholar
  26. 26.
    KJONAAS, R., CROTEAU, R. 1983. Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species. Arch. Biochem. Biophys. 220: 79–89.PubMedCrossRefGoogle Scholar
  27. 27.
    LOOMIS, W.D. 1974. Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 31: 528–544.PubMedCrossRefGoogle Scholar
  28. 28.
    LOOMIS, W.D., Lile, J.D., Sandstrom, R.P., Burbott, A.J. 1979. Adsorbent polystyrene as an aid in plant enzyme isolation. Phytochemistry 18: 1049–1054.CrossRefGoogle Scholar
  29. 29.
    GAFF, D.F., OKONG’O-OGOLA, O. 1971. The use of non-permeating pigments for testing the survival of cells. J. Exp. Bot. 22: 756–758.CrossRefGoogle Scholar
  30. 30.
    LOOMIS, W.D., CROTEAU, R. 1973. Biochemistry and physiology of lower terpenoids. Rec. Adv. Phytochem. 6: 147–186.Google Scholar
  31. 31.
    CHARLWOOD, B.V., BANTHORPE, D.V. 1978. The biosynthesis of monoterpenes. In: Progress in Phytochemistry, Vol. 5, (L. Rein-hold, J.B. Harborne, T. Swain, eds.) Pergamon Press, Oxford, pp. 65–125.Google Scholar
  32. 32.
    BURNELL, J.N. 1988. An enzymic method for measuring the molecular weight exclusion limit of plasmodesmata of bundle sheath cells of C4 plants. J. Exp. Bot. 39: 1575–1580.CrossRefGoogle Scholar
  33. 33.
    BURNELL, J.N., HATCH, M.D. 1988. Photosynthesis in phospho-enolpyruvate carboxykinase-type C4 plants: Photosynthetic activities of isolated bundle sheath cells from Urochloa panicoides. Arch. Biochem. Biophys. 260: 177–186.PubMedCrossRefGoogle Scholar
  34. 34.
    SLONE, J.H., KELSEY, R.G. 1985. Isolation and purification of glandular secretory cells from Artemisia tridentata (ssp. vaseyana) by Percoll density gradient centrifugation. Amer. J. Bot. 72: 1445–1451.CrossRefGoogle Scholar
  35. 35.
    KELSEY, R.G., SHAFIZADEH, F. 1980. Glandular trichomes and sesquiterpene lactones of Artemisia nova (Asteraceae). Biochem. Syst. Ecol. 8: 371–377.CrossRefGoogle Scholar
  36. 36.
    CROTEAU, R. 1987. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87: 929–954.CrossRefGoogle Scholar
  37. 37.
    KARP, F., MIHALIAK, C.A., HARRIS, J.L., CROTEAU, R. 1990. Monoterpene biosynthesis: Specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata) and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. 276: 219–226.PubMedCrossRefGoogle Scholar
  38. 38.
    CROTEAU, R., KARP, F. 1979. Biosynthesis of monoterpenes: Hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch. Biochem. Biophys. 198: 523–532.PubMedCrossRefGoogle Scholar
  39. 39.
    CROTEAU, R., CANE, D.E. 1985. Monoterpene and sesquiterpene cyclases. Methods Enzymol. 110: 352–405.Google Scholar
  40. 40.
    KARP, F., HARRIS, J.L., CROTEAU, R. 1987. Metabolism of monoterpenes: Demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves. Arch. Biochem. Biophys. 256: 179–193.PubMedCrossRefGoogle Scholar
  41. 41.
    CROTEAU, R., SATTERWHITE, D.M. 1989. Biosynthesis of monoterpenes: Stereochemical implications of acyclic and monocyclic olefin formation by (+)- and (-)-pinene cyclase from sage. J. Biol. Chem. 264: 15309–15315.PubMedGoogle Scholar
  42. 42.
    CROTEAU, R., WHEELER, C.J., AKSELA, R., OEHLSCHLAGER, A.C. 1986. Inhibition of monoterpene cyclases by sulfonium analogs of presumptive carbocationic intermediates of the cyclization reaction. J. Biol. Chem. 261: 7257–7263.PubMedGoogle Scholar
  43. 43.
    CROTEAU, R. 1977. Site of monoterpene biosynthesis in Majorana hortensis leaves. Plant Physiol. 59: 519–520.PubMedCrossRefGoogle Scholar
  44. 44.
    CROTEAU, R., FELTON, M., KARP, F., KJONAAS, R. 1981. Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol. 67: 820–824.PubMedCrossRefGoogle Scholar
  45. 45.
    GRAY, J.C. 1987. Control of isoprenoid biosynthesis in higher plants. Adv. Bot. Res. 14: 25–91.CrossRefGoogle Scholar
  46. 46.
    GERSHENZON, J., CROTEAU, R. 1990. Regulation of monoterpene biosynthesis in higher plants. Rec. Adv. Photochem. 24: 99–160.Google Scholar
  47. 47.
    BURBOTT, A.J., LOOMIS, W.D. 1969. Evidence for metabolic turnover of monoterpenes in peppermint. Plant Physiol. 44: 173–179.PubMedCrossRefGoogle Scholar
  48. 48.
    DEHAL, S.S., CROTEAU, R. 1987. Metabolism of monoterpenes: Specificity of the dehydrogenases responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone. Arch. Biochem. Biophys. 258: 287–291.PubMedCrossRefGoogle Scholar
  49. 49.
    CROTEAU, R., PURKETT, P.T. 1989. Geranyl pyrophosphate synthase: Characterization of the enzyme and evidence that this chainlength specific prenyltransferase is associated with monoterpene biosynthesis in sage (Salvia officinalis). Arch. Biochem. Biophys. 271: 524–535.PubMedCrossRefGoogle Scholar
  50. 50.
    CROTEAU, R., GURKEWITZ, S., JOHNSON, M.A., FISK, H.J. 1987. Biochemistry of oleoresinosis: Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol. 85: 1123–1128.PubMedCrossRefGoogle Scholar
  51. 51.
    WEST, C.A., DUDLEY, M.W., DUEBER, M.T. 1979. Regulation of terpenoid biosynthesis in higher plants. Rec. Adv. Phytochem. 13: 163–198.Google Scholar
  52. 52.
    TANAKA, S., YAMAURA, T., TABATA, M. 1988. Localization and photoregulation of monoterpenoid biosynthesis in thyme seedlings. In: Bioflavour 87: Analysis, Biochemistry, Biotechnology. (P. Schreier, ed.) Walter de Gruyter, Berlin, pp. 237–241.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jonathan Gershenzon
    • 1
  • David McCaskill
    • 1
  • Jean Rajaonarivony
    • 1
  • Charles Mihaliak
    • 1
  • Frank Karp
    • 1
  • Rodney Croteau
    • 1
  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations