Regeneration and Morphogenesis in the Feather Star Arm

  • M. Daniela Candia-Carnevali
  • Ludovica Bruno
  • Suzanne Denis Donini
  • Giulio Melone
Part of the NATO ASI Series book series (NSSA, volume 172)


The regeneration of the arm of the crinoid Antedon mediterranea has been studied by means of LM, TEM, and SEM techniques as regards the development of both the external form and the internal anatomical organization. According to the timing and the modalities of development of the different structures and their reciprocal interactions, three main stages can be recognized in the morphogenesis of the whole arm: 1) a coelom-dependent stage, 2) a nervous system-dependent stage and 3) a skeleton-dependent stage. Moreover, using histofluorescence and immunohistochemical methods to visualize catecholamines and indolamines, it has been possible to reveal the presence of dopamine and serotonin and follow the fluctuations and the different involvements of these neuro-trasmitters during the regeneration process.


Tyrosine Hydroxylase Nervous Trunk Coelomic Cavity Coelomic Epithelium Anatomical Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Candia-Carnevali, M.D. and Saita A., 1985a, Muscle system organization in the echinoderms: II. Microscopic anatomy and functional significance of the muscle-ligament-skeleton system in the arm of the comatulid Antedon mediterranea, J. Morphol., 185:59–74.CrossRefGoogle Scholar
  2. Candia-Carnevali, M.D. and Saita, A., 1985b, Muscle system organization in the echinoderms: III. Fine structure of the contractile apparatus of the arm flexor muscle of the comatulid Antedon mediterranea, J. Morphol., 185:75–87.CrossRefGoogle Scholar
  3. Cobb, J.L.S., 1969, The distribution of mono-amines in the nervous system of echinoderms, Comp. Biochem. Physiol., 28:967–971.CrossRefGoogle Scholar
  4. Cobb, J.L.S., 1986, Neurobiology of the Echinodermata, in: “Nervous System in Invertebrates”, M.A. Ali ed., NATO ASI Series A, vol. 14, Plenum Press, New York.Google Scholar
  5. De Biasi, S., Vitellaro-Zuccarello L. and Blum, I., 1984, His-tochemical localization of monoamines and cholinester-ases in Mytilus pedal ganglion, Histochemistry, 81:561–565.PubMedCrossRefGoogle Scholar
  6. Franquinet, R., 1979, Role de la Sérotonine et des catécholamines dans la régénération de la planaire Polycelis tenuis, J. Embryol. exp. Morphol., 51:85–95.PubMedGoogle Scholar
  7. Franquinet, R. and Catania R., 1979, Localization histofluorimetrique et étude microspectrofluorimetrique de la Serotonine et des catecholamines chez une Planaire entière et en cours de régénération, C.R. Acad. Sc. Paris, 289:339–342.Google Scholar
  8. Holland, N.D. and Grimmer, J.C., 1981, Fine structure of syzygial articulations before and after arm autotomy, Zoomorpholoqy, 98:169–183.CrossRefGoogle Scholar
  9. Huet, M., 1975, Le rôle du système nerveux au cours de la régénération du bras chez une étoile de mer, Asterina qibbosa Penn. (Echinoderme, Astéride), J. Embryol. exp. Morph., 33:535–552.PubMedGoogle Scholar
  10. Huet, M. and Franquinet, R., 1981, Histofluorescence study and biochemical assay of catecholamines (Dopamine and Noradrenaline) during the course of arm-tip regeneration in the starfish Asterina qibbosa (Echinodermata, Asteroidea), Histochemistry, 72:149–154.PubMedCrossRefGoogle Scholar
  11. Hyman, L.H., 1955, “The Invertebrates. Echinodermata”. Vol. 4, McGraw Hill, New York, Toronto.Google Scholar
  12. Lauder, J.M., Tamir, H. and Sandler, T.W., 1988, Serotonin and morphogenesis. I. Sites of serotonin uptake and binding protein immunoreactivity in the midgestration mouse embryo, Development, 102:709–720.PubMedGoogle Scholar
  13. Lenique, P.M. and Feral, J.P., 1977, Effects of biogenic amines on the regeneration of small pieces of the pedal disc of the sea anemone Metridium senile (Linnaeus), Comp. Biochem. Physiol., 57C:91–93.Google Scholar
  14. Minckert, A.R., 1905, Regeneration bei Comatuliden, Arch. Nat-urcresch., 71, (pt. l):163–244.Google Scholar
  15. Mladenov, P., 1983, Rate of arm regeneration and potential causes of arm loss in the feather star Florometra ser-ratissima (Echinodermata, Crinoidea), J. Canad. Zool., 61:2873–2879.CrossRefGoogle Scholar
  16. Perrier, E., 1873, L’anatomie et la régénération des bras de la Comatule, Arch. Zool. Exp. Gen., 2:29–86.Google Scholar
  17. Przibram, H., 1901, Experimentelle Studien über Regeneration, Arch. Entw. Mech. Organismen, 11:321–345.CrossRefGoogle Scholar
  18. Reichensperger, H., 1912, Beitrage zur Histologie und zum Verlauf der Regeneration bei Crinoiden, Ztschr. Wiss. Zoll., 101:1–69.Google Scholar
  19. Scholer, J. and Armstrong, W.E., 1982, Aqueous aldehyde (Faglu) histofluorescence for catecholamines in 2 um sections using polyethylene glycol embedding, Brain Res. Bull. 9:27–31.PubMedCrossRefGoogle Scholar
  20. Wilkie, I.C., 1984, Variable tensility in echinoderm collagenous tissues: A review, Mar. Behav. Physiol., 11:1–34.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • M. Daniela Candia-Carnevali
    • 1
  • Ludovica Bruno
    • 1
  • Suzanne Denis Donini
    • 1
  • Giulio Melone
    • 1
  1. 1.Dipartimento di BiologiaUniversita di MilanoMilanoItaly

Personalised recommendations