Advertisement

Pattern Regeneration in an Insect Segment

  • Katharina Nübler-Jung
Part of the NATO ASI Series book series (NSSA, volume 172)

Summary

The integument of an insect segment displays a sequence of differentiated cells and a polarity pattern of uniformly oriented cuticular protrusions. It has been proposed that both pattern features are controlled by the concentration gradient of some diffusible morphogen. I report that an abnormal cell sequence is repaired by cell sorting and/or by intercalary regeneration of missing pattern elements. Patterning in the intercalary regenerate need not,though may, rely on a graded morphogen concentration. A disturbed polarity pattern, on the other hand, repairs itself by cell interactions that operate independently of a gradient.

Keywords

Abdominal Segment Polarity Pattern Gradient Model Insect Epidermis Segment Polarity Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, N.B., 1987, Molecular cloning of sequences from wingless a segment polarity gene in Drosophila; the spatial distribution of a transcript in embryos, EMBO J., 6:1765–1773.PubMedGoogle Scholar
  2. Baker, N.B., 1988, Embryonic and imaginai requirements for wingless, a segment polarity gene in Drosophila, Devl. Biol., 125:96–108.CrossRefGoogle Scholar
  3. Bohn, H., 1965, Analyse der Regenerationsfähigkeit der Insektenextremitat durch Amputations — und Transplanta tions- versuche an Larven der afrikanischen Schabe(Leucophaea maderae Fabr.) II. Mitteilung. Achsendetermination, Wilh. Roux’ Arch. EntwMech. Org., 146:449–503.CrossRefGoogle Scholar
  4. Bohn, H., 1974, Pattern reconstitution in abdominal segment of Leucophaea maderae (Blattaria), Nature, 248:608.PubMedCrossRefGoogle Scholar
  5. Cabrera, C.V., Alonso, M.C., Johnston, P., Phillips, R.G. and Lawrence, P.A., 1987, Phenocopies induced with anti-sense RNA identify the wingless gene, Gene, 50:659–663.Google Scholar
  6. Campbell, G.L., 1987, Cell behaviour during postembryonic pattern regulation in the insect abdomen fOncopeltus fas- ciatus). II. Intrasegmental regulation, Development, 101:237–246.Google Scholar
  7. Crawford, K. and Stocum, D.L., 1988, Retinoic acid coordi-nately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs, Development, 102:687–698.PubMedGoogle Scholar
  8. Elsdale, T. and Wasoff, F., 1976, Fibroblast cultures and der-matoglyphics: the topology of two planar patterns. Wilh. Roux’ Arch. Dev. Biol., 180:121–147.CrossRefGoogle Scholar
  9. French, V., Bryant, P.J., and Bryant, S.V., 1976, Patternregulation in epimorphic fields. Science, 193:969–981.PubMedCrossRefGoogle Scholar
  10. Harrison, L.G., and Tan, K.Y., 1988, Where may reaction-diffusion mechanisms be operating in metameric patterning of Drosophila embryos? Bioessays, 8:118–124.PubMedCrossRefGoogle Scholar
  11. Hollweg, G., 1972, Eine neue Farbmuster-Mutante “white” der roten Baumwollwanze Dysdercus intermedius Dist. (Heter- optera, Pyrrhocoridae), Biol. Zentralbl., 91:545–556.Google Scholar
  12. Kornberg, T., Siden I., O’ Farrell, P. and Simon, M., 1985, The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment specific expression. Cell, 40:45–63.PubMedCrossRefGoogle Scholar
  13. Lawrence, P.A., 1974, Cell movement during pattern regulation in Oncopeltus. Nature, 248:609–610.PubMedCrossRefGoogle Scholar
  14. Lawrence, P.A., 1987, Pair-rule genes: do they paint stripes or draw lines? Cell, 51:879–880.PubMedCrossRefGoogle Scholar
  15. Lawrence, P.A., Crick, F.H.C. and Munro, M., 1971, A gradient of positional information in an insect, Rhodnius, J. Cell Sci., 11:815–853.Google Scholar
  16. Locke, M., 1967, The development of patterns in the integument of insects, Adv. Morphogen., 6:33–88.Google Scholar
  17. Martinez-Arias, A., Baker, N.E. and Ingham, P.W., 1988, Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo, Development, 103:157–170.Google Scholar
  18. Meinhardt, H. and Gierer, A., 1980, Generation and regeneration of sequence of structures during morphogenesis, J. theor. Biol., 85:429–450.PubMedCrossRefGoogle Scholar
  19. Mittenthal, J.E. and Mazo, R.M., 1983, A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment, J.Theor. Biol., 100:443–483.PubMedCrossRefGoogle Scholar
  20. Nardi, J.B. and Kafatos, F.C., 1976, Polarity and gradients in lepidopteran wing epidermis: II. The differential adhesiveness model: gradient of a non-diffusible cell surface parameter, J. Embryol. Exp. Morphol., 36:489–512.PubMedGoogle Scholar
  21. Nübler-Jung, K., 1974, Cell migration during pattern reconstitution in the insect segment (Dysdercus intermedius Dist., Heteroptera), Nature, 248:610–611.PubMedCrossRefGoogle Scholar
  22. Nübler-Jung, K., 1977, Pattern stability in the insect segment. I. Pattern reconstitution by intercalary regeneration and cell sorting in Dusdercus intermedius Dist., Wilh. Roux’s Arch.. 183:17–40.CrossRefGoogle Scholar
  23. Nubler-Jung, K., 1979, Pattern stability in the insect segment: II. The intersegmental region. Wilh. Roux’s Arch., 186:211–233.CrossRefGoogle Scholar
  24. Nubler-Jung, K., 1987a, Insect epidermis: disturbance of supracellular tissue polarity does not prevent the expression of cell polarity, Roux’s Arch. Dev. Biol., 196:286–289.CrossRefGoogle Scholar
  25. Nübler-Jung, K., 1987b, Tissue polarity in an insect segment: denticle patterns resemble spontaneously forming fibroblast patterns, Development, 100:171–177.Google Scholar
  26. Niibler-Jung, K., Bonitz R. and Sonnenschein M., 1987, Cell polarity during wound healing in an insect epidermis, Development, 100:163–170.Google Scholar
  27. Nübler-Jung, K. and Grau, V., 1987, Pattern control in insect segments: superimposed features of the pattern may be subject to different control mechanisms. Roux’s Arch. Dev. Biol.,196:290–294.CrossRefGoogle Scholar
  28. Piepho, H., 1955, Über die Ausrichtung der Schuppenbälge und Schuppen auf dem Schmetterlingsrumpf, Biol. Zbl., 42:22.Google Scholar
  29. Sander, K. and Nübler-Jung, K., 1981, Polarity and gradients in insect development, in: “International Cell Biology 1980–1981”, H.G. Schweiger ed., Springer Verlag, Berlin, pp. 497–506.CrossRefGoogle Scholar
  30. Shields, J.M. and Haston, W.S., 1985, Behaviour of neutrophil leucocytes in uniform concentrations of chemotactic factors: contraction waves, cell polarity and persistence, J. Cell Sci., 74:75–93.PubMedGoogle Scholar
  31. Snyderman, R. and Goetzel, E.J., 1981, Molecular and cellular mechanisms of leukocyte Chemotaxis, Science, 213:830–837.PubMedCrossRefGoogle Scholar
  32. Wolpert, L., 1971, Positional information and pattern formation, Curr. Top. devl. Biol., 6:183–224.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Katharina Nübler-Jung
    • 1
  1. 1.Biologisches Institut I (Zoologie)FreiburgF.R. Germany

Personalised recommendations