The Origins of Spinal Ganglia in the Amphibian Tail

  • Jacqueline Géraudie
  • Ruth Nordlander
  • Marcus Singer
Part of the NATO ASI Series book series (NSSA, volume 172)


Sensory ganglia of the amphibian tail differ from those of the trunk with regard to developmental pattern and ability to regenerate. We set out to examine tail ganglion formation during normal development and regeneration. Ganglion ontogenesis and regeneration in the tail follow a similar sequence beginning with ventral root outgrowth, formation of anlagen whose cells divide and go on to form ganglion neurons and glia and the later appearance of dorsal roots. Because there is no classical neural crest the source of the anlagen cells is not entirely clear. Our findings suggest that cells forming the regenerating ganglion migrate from the ventrolateral part of the regenerating spinal cord, whereas those of the embryonic and larval tail probably come from the tail bud.


Dorsal Root Neural Tube Neural Crest Neural Crest Cell Ventral Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anton, H.J., D. Weber and H. Doring, 1986, The restitution of spinal ganglia during tail regeneration in Triturus alpestris, Abst. Regeneration Club, Koln, 23–24.Google Scholar
  2. Beltz, B.S., G.D. Burd, 1986, “Basic Immunocytochemical Techniques”, Marine Biological Laboratory, Woods Hole, Mass.Google Scholar
  3. Bijtel, J.H., 1958, The mode of growth of the tail in Urodele larvae, J. Embryol. exp. Morph., 6:466–478.PubMedGoogle Scholar
  4. Bronner-Fraser, M., 1986, Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1, Devel. Biol., 115:44–55.CrossRefGoogle Scholar
  5. Bronner-Fraser, M., 1987, Perturbation of cranial neural crest migration by the HNK-1 antibody, Devel. Biol., 123:321–331.CrossRefGoogle Scholar
  6. Detwiler, S.R., 1936, “Neuroembryology: an Experimental Study”, The MacMillan Co., New York.Google Scholar
  7. Detwiler, S.R., 1937, An experimental study of spinal nerve segmentation in Ambystoma with reference to the pleuri-segmental contribution to the brachial plexus, J. Exp. Zool., 67:395–441.CrossRefGoogle Scholar
  8. Egar, M. and Singer, M., 1972, The role of ependyma in spinal cord regeneration in the urodele, Triturus, Exp. Neurol., 37:422–430.PubMedCrossRefGoogle Scholar
  9. Fraisse, P., 1885, “Die Regeneration von Geweben und Organen bei den Wierbelthieren, besonders Amphibien und Reptilien”, Verlag von Theodor Fischer, Cassei und Berlin.CrossRefGoogle Scholar
  10. Francis, E.T.B. 1934, “The anatomy of the salamander”, Oxford University Press, Oxford.Google Scholar
  11. Gallien, L. and Durocher, M., 1957, Table chronologique du developpement chez Pleurodeles waltlii, Michah, Bull. Biol. Fr. Belcr., 91:97–114.Google Scholar
  12. Geraudie, J., Nordlander, R.H., Singer, M. and Singer, J., 1988, Early stages of spinal ganglion formation during tail regeneration in the newt, Notophthalmus virides-cens, Am. J. Anat., (in press).Google Scholar
  13. Goss, R.J., 1969, “Principles of Regeneration”, Academic Press, N.Y.Google Scholar
  14. Harrison, R.G., 1898, The growth and regeneration of the tail of the frog larva, studied with the aid of Born’s method of grafting, Arch. Entwickl., 7:430–485.CrossRefGoogle Scholar
  15. Holley, J.A. and Yu, R.K., 1987, Localization of glycoconju-gates recognized by the HNK-1 antibody in mouse and chick embryos during early neural development, Dev. Neurosci., 9:105–119PubMedCrossRefGoogle Scholar
  16. Holtzer, H., Holtzer, S., and G. Avery, 1955, An experimental analysis of the development of the spinal column. IV: Morphogenesis of tail vertebrae during regeneration, J. Morph., 96:145–168.CrossRefGoogle Scholar
  17. Hughes, A. and Tschumi, P., 1958, The factors controlling the development of the dorsal root ganglion and ventral horn in Xenopus laevis, J. Anat., 92:498–527.PubMedGoogle Scholar
  18. Krotosky, D.M., Fraser, S.E. and Bronner-Fraser, M., 1988, Mapping of neural crest pathways in Xenopus laevis using inter- and intraspecific cell markers, Devel. Biol., 127:119–132.CrossRefGoogle Scholar
  19. Kruse, J., Mailhammer, R., Wenecke, H., Faissner, A., Sommer, I., Goridis, C., and Schachner, M., 1984, Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1, Nature (Lond.), 311:153–155.CrossRefGoogle Scholar
  20. Le Douarin, N.M., 1982, “The Neural Crest”, Cambridge University Press, Cambridge.Google Scholar
  21. Le Douarin, N.M., 1984, Cell migrations in embryos, Cell, 38:353–360.PubMedCrossRefGoogle Scholar
  22. Lunn, E.R., Scourfield, J., Keynes, R.J. and Stern, C.D. 1987, The neural tube origin of central root sheath cells in the chick embryo, Development, 101:247–254.PubMedGoogle Scholar
  23. Nakao, t. and Ischizawa, A., 1984, Light- and electron-microscope observations of the tail bud of the larval lamprey (Lampetra iaponica) with special references to neural tube formation, Am. J. Anat., 170:55–71.PubMedCrossRefGoogle Scholar
  24. Nieuwkoop, R.D. and Faber, J., 1967, “Normal Table of Xenopus laevis (Daudin)”, 2nd ed., Elsevier, Amsterdam.Google Scholar
  25. Nordlander, R.H., 1987, Establishment of a sensory pathway in the amphibian tail spinal cord, Abst. Soc. Neurosci., 13:468.Google Scholar
  26. Nordlander, R.H., Awwiller, D.M. and Cook, H., 1988, Dorsal roots are absent from the tail of larval Xenopus, Brain Res., 440:391–395.PubMedCrossRefGoogle Scholar
  27. Nordlander, R.H. and Singer, M., 1978, The role of ependyma in regeneration of the spinal cord of the urodele amphibian tail., J. Comp. Neurol., 180:349–374.PubMedCrossRefGoogle Scholar
  28. Nordlander, R.H., Singer, J.F., Beck, R. and Singer, M., 1981, An ultrastructural examination of early ventral root formation in Amphibia. J. Comp. Neurol., 199:535–551.PubMedCrossRefGoogle Scholar
  29. Rickmann, M., Fawcett, J.W. and Keynes, R.J., 1985, The migration of neural crest cells and the growth cones of motor axons through the rostral part of the chick somite, J. Embryol. exp. Morph., 90:437–455.PubMedGoogle Scholar
  30. Schoenwolf, G.C., 1977, Tail (end) bud contributions to the posterior region of the chick embryo, J. Exp. Zool., 201:227–246.CrossRefGoogle Scholar
  31. Schoenwolf, G.C., Chandler, N.B. and Smith, J.I., 1985, Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos, Devel. Biol., 110:467–479.CrossRefGoogle Scholar
  32. Schoenwolf, G.C. and Nicholls, D.H., 1984, Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos, J. Comp. Neurol., 222:496–505.PubMedCrossRefGoogle Scholar
  33. Schreckenberg, G.M. and Jacobson, A.G., Normal stages of development of the axolotl, Ambystoma mexicanum, Devel. Biol., 42:391–400.CrossRefGoogle Scholar
  34. Singer, M., 1946, The nervous system and regeneration of the forelimb of adult Triturus. IV. The stimulating action of a regenerated motor supply, J. Exp. Zool., 101:221–240.PubMedCrossRefGoogle Scholar
  35. Teillet, M.A., Kalcheim, C., and Le Douarin, N.M., 1987, Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells, Devel. Biol., 120:329–347.CrossRefGoogle Scholar
  36. Tucker, G.C, Aoyama, H., Lipinski, M., Curz, T. and Thiery, J.P., 1984, Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from neural primordia and on some leukocytes, Cell Differ., 14:223–230.PubMedCrossRefGoogle Scholar
  37. Weston, J.A., 1970, The migration and differentiation of neural crest cells, Adv. Morphoqen., 8:41–114.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jacqueline Géraudie
    • 1
  • Ruth Nordlander
    • 2
  • Marcus Singer
    • 3
  1. 1.Laboratoire d’Anatomie ComparéeUniversité Paris 7ParisFrance
  2. 2.Department of Oral BiologyReserve UniversityClevelandUSA
  3. 3.Department of Anatomy, Case WesternReserve UniversityClevelandUSA

Personalised recommendations