Skip to main content

The Origins of Spinal Ganglia in the Amphibian Tail

  • Chapter
Recent Trends in Regeneration Research

Part of the book series: NATO ASI Series ((NSSA,volume 172))

Summary

Sensory ganglia of the amphibian tail differ from those of the trunk with regard to developmental pattern and ability to regenerate. We set out to examine tail ganglion formation during normal development and regeneration. Ganglion ontogenesis and regeneration in the tail follow a similar sequence beginning with ventral root outgrowth, formation of anlagen whose cells divide and go on to form ganglion neurons and glia and the later appearance of dorsal roots. Because there is no classical neural crest the source of the anlagen cells is not entirely clear. Our findings suggest that cells forming the regenerating ganglion migrate from the ventrolateral part of the regenerating spinal cord, whereas those of the embryonic and larval tail probably come from the tail bud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anton, H.J., D. Weber and H. Doring, 1986, The restitution of spinal ganglia during tail regeneration in Triturus alpestris, Abst. Regeneration Club, Koln, 23–24.

    Google Scholar 

  • Beltz, B.S., G.D. Burd, 1986, “Basic Immunocytochemical Techniques”, Marine Biological Laboratory, Woods Hole, Mass.

    Google Scholar 

  • Bijtel, J.H., 1958, The mode of growth of the tail in Urodele larvae, J. Embryol. exp. Morph., 6:466–478.

    PubMed  CAS  Google Scholar 

  • Bronner-Fraser, M., 1986, Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1, Devel. Biol., 115:44–55.

    Article  CAS  Google Scholar 

  • Bronner-Fraser, M., 1987, Perturbation of cranial neural crest migration by the HNK-1 antibody, Devel. Biol., 123:321–331.

    Article  CAS  Google Scholar 

  • Detwiler, S.R., 1936, “Neuroembryology: an Experimental Study”, The MacMillan Co., New York.

    Google Scholar 

  • Detwiler, S.R., 1937, An experimental study of spinal nerve segmentation in Ambystoma with reference to the pleuri-segmental contribution to the brachial plexus, J. Exp. Zool., 67:395–441.

    Article  Google Scholar 

  • Egar, M. and Singer, M., 1972, The role of ependyma in spinal cord regeneration in the urodele, Triturus, Exp. Neurol., 37:422–430.

    Article  PubMed  CAS  Google Scholar 

  • Fraisse, P., 1885, “Die Regeneration von Geweben und Organen bei den Wierbelthieren, besonders Amphibien und Reptilien”, Verlag von Theodor Fischer, Cassei und Berlin.

    Book  Google Scholar 

  • Francis, E.T.B. 1934, “The anatomy of the salamander”, Oxford University Press, Oxford.

    Google Scholar 

  • Gallien, L. and Durocher, M., 1957, Table chronologique du developpement chez Pleurodeles waltlii, Michah, Bull. Biol. Fr. Belcr., 91:97–114.

    Google Scholar 

  • Geraudie, J., Nordlander, R.H., Singer, M. and Singer, J., 1988, Early stages of spinal ganglion formation during tail regeneration in the newt, Notophthalmus virides-cens, Am. J. Anat., (in press).

    Google Scholar 

  • Goss, R.J., 1969, “Principles of Regeneration”, Academic Press, N.Y.

    Google Scholar 

  • Harrison, R.G., 1898, The growth and regeneration of the tail of the frog larva, studied with the aid of Born’s method of grafting, Arch. Entwickl., 7:430–485.

    Article  Google Scholar 

  • Holley, J.A. and Yu, R.K., 1987, Localization of glycoconju-gates recognized by the HNK-1 antibody in mouse and chick embryos during early neural development, Dev. Neurosci., 9:105–119

    Article  PubMed  CAS  Google Scholar 

  • Holtzer, H., Holtzer, S., and G. Avery, 1955, An experimental analysis of the development of the spinal column. IV: Morphogenesis of tail vertebrae during regeneration, J. Morph., 96:145–168.

    Article  Google Scholar 

  • Hughes, A. and Tschumi, P., 1958, The factors controlling the development of the dorsal root ganglion and ventral horn in Xenopus laevis, J. Anat., 92:498–527.

    PubMed  CAS  Google Scholar 

  • Krotosky, D.M., Fraser, S.E. and Bronner-Fraser, M., 1988, Mapping of neural crest pathways in Xenopus laevis using inter- and intraspecific cell markers, Devel. Biol., 127:119–132.

    Article  Google Scholar 

  • Kruse, J., Mailhammer, R., Wenecke, H., Faissner, A., Sommer, I., Goridis, C., and Schachner, M., 1984, Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1, Nature (Lond.), 311:153–155.

    Article  CAS  Google Scholar 

  • Le Douarin, N.M., 1982, “The Neural Crest”, Cambridge University Press, Cambridge.

    Google Scholar 

  • Le Douarin, N.M., 1984, Cell migrations in embryos, Cell, 38:353–360.

    Article  PubMed  Google Scholar 

  • Lunn, E.R., Scourfield, J., Keynes, R.J. and Stern, C.D. 1987, The neural tube origin of central root sheath cells in the chick embryo, Development, 101:247–254.

    PubMed  CAS  Google Scholar 

  • Nakao, t. and Ischizawa, A., 1984, Light- and electron-microscope observations of the tail bud of the larval lamprey (Lampetra iaponica) with special references to neural tube formation, Am. J. Anat., 170:55–71.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, R.D. and Faber, J., 1967, “Normal Table of Xenopus laevis (Daudin)”, 2nd ed., Elsevier, Amsterdam.

    Google Scholar 

  • Nordlander, R.H., 1987, Establishment of a sensory pathway in the amphibian tail spinal cord, Abst. Soc. Neurosci., 13:468.

    Google Scholar 

  • Nordlander, R.H., Awwiller, D.M. and Cook, H., 1988, Dorsal roots are absent from the tail of larval Xenopus, Brain Res., 440:391–395.

    Article  PubMed  CAS  Google Scholar 

  • Nordlander, R.H. and Singer, M., 1978, The role of ependyma in regeneration of the spinal cord of the urodele amphibian tail., J. Comp. Neurol., 180:349–374.

    Article  PubMed  CAS  Google Scholar 

  • Nordlander, R.H., Singer, J.F., Beck, R. and Singer, M., 1981, An ultrastructural examination of early ventral root formation in Amphibia. J. Comp. Neurol., 199:535–551.

    Article  PubMed  CAS  Google Scholar 

  • Rickmann, M., Fawcett, J.W. and Keynes, R.J., 1985, The migration of neural crest cells and the growth cones of motor axons through the rostral part of the chick somite, J. Embryol. exp. Morph., 90:437–455.

    PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C., 1977, Tail (end) bud contributions to the posterior region of the chick embryo, J. Exp. Zool., 201:227–246.

    Article  Google Scholar 

  • Schoenwolf, G.C., Chandler, N.B. and Smith, J.I., 1985, Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos, Devel. Biol., 110:467–479.

    Article  CAS  Google Scholar 

  • Schoenwolf, G.C. and Nicholls, D.H., 1984, Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos, J. Comp. Neurol., 222:496–505.

    Article  PubMed  CAS  Google Scholar 

  • Schreckenberg, G.M. and Jacobson, A.G., Normal stages of development of the axolotl, Ambystoma mexicanum, Devel. Biol., 42:391–400.

    Article  Google Scholar 

  • Singer, M., 1946, The nervous system and regeneration of the forelimb of adult Triturus. IV. The stimulating action of a regenerated motor supply, J. Exp. Zool., 101:221–240.

    Article  PubMed  CAS  Google Scholar 

  • Teillet, M.A., Kalcheim, C., and Le Douarin, N.M., 1987, Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells, Devel. Biol., 120:329–347.

    Article  CAS  Google Scholar 

  • Tucker, G.C, Aoyama, H., Lipinski, M., Curz, T. and Thiery, J.P., 1984, Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from neural primordia and on some leukocytes, Cell Differ., 14:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Weston, J.A., 1970, The migration and differentiation of neural crest cells, Adv. Morphoqen., 8:41–114.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Géraudie, J., Nordlander, R., Singer, M. (1989). The Origins of Spinal Ganglia in the Amphibian Tail. In: Kiortsis, V., Koussoulakos, S., Wallace, H. (eds) Recent Trends in Regeneration Research. NATO ASI Series, vol 172. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9057-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9057-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9059-6

  • Online ISBN: 978-1-4684-9057-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics