Renormalization Schemes: Where do We Stand?

  • B. F. L. Ward
Part of the NATO ASI Series book series (NSSB, volume 233)


We consider the status of the current approaches to the application of the renormalization program to the standard SU2L × U1 theory from the standpoint of the interplay of the scheme chosen for such an application and the attendant high-precision tests of the respective loop effects. We thus review the available schemes and discuss their theoretical relationships. We also show how such schemes stand in numerical relation to one another in the context of high-precision Z 0 physics, as an illustration.


Radiative Correction Finite Order Renormalization Scheme Precision Test Loop Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, B. F. L. Ward, Acta Phys. Pol. B19:465 (1988);Google Scholar
  2. 1a.
    R. Rankin, Proc. MkII SLC Pajaro Dunes Workshop, J. Hu, ed., SLAC, Stanford, CA (1987);Google Scholar
  3. 1b.
    G. Altarelli, Physics at LEP, J. Ellis and R. Peccei eds., CERN, Geneva, Switzerland (1985);Google Scholar
  4. 1c.
    G. Altarelli, Proc. HERA Experiments, Genoa, Italy (1984);Google Scholar
  5. 1d.
    G. Altarelli, Proc. La Thuile Workshop 1987, Vol. 1, J. H. Mulvey, ed., CERN, Geneva, Switzerland (1987) and references therein.Google Scholar
  6. 2.
    F. A. Berends et al, Nucl. Phys. B 297:249 (1988);CrossRefGoogle Scholar
  7. 2a.
    M. Greco, La Rivista del Nuovo Cimento 11 n.5 (1988) and references therein.Google Scholar
  8. 3.
    See, for example, S. Jadach, preprint MPI-PAE/P Th 6/87; S. Jadach and B. F. L. Ward, Phys. Rev: D 38:2897 (1988); preprint UTHEP-88–0801;ADSCrossRefGoogle Scholar
  9. 3a.
    S. Jadach and B. F. L. Ward, Phys. Lett. 220B:611 (1989); SLAC-PUB-4834, to be published in Comp. Phys. Commun. (1989).ADSGoogle Scholar
  10. 4.
    T. W. Applequist, J. R. Primack and H. R. Quinn, Phys. Rev. D 7:2998 (1973);ADSCrossRefGoogle Scholar
  11. 4a.
    W. J. Marciano and A. Sirlin, Phys. Rev. D 8:3612 (1973)ADSCrossRefGoogle Scholar
  12. 4b.
    (I); P. Salomonson and Y. Ueda, Phys. Rev. D 11:2606 (1975);ADSCrossRefGoogle Scholar
  13. 4c.
    R. Philippe, Phys. Rev. D 26:1588 (1982);ADSCrossRefGoogle Scholar
  14. 4d.
    D. A. Ross and J. C. Taylor, Nucl. Phys. B 51:125 (1973);ADSCrossRefGoogle Scholar
  15. 4e.
    M. Veltman, Phys. Lett 91B:95 (1980);ADSGoogle Scholar
  16. 4f.
    G. Passarono and M. Veltman, Nucl. Phys. B 160:151 (1979);ADSCrossRefGoogle Scholar
  17. 4g.
    A. Sirlin, Phys. Rev. D22:971 (1980);Google Scholar
  18. 4h.
    W. J. Marciano and A. Sirlin, Phys. Rev. ibid., D 22:2695 (1980);ADSCrossRefGoogle Scholar
  19. 4i.
    W. J. Marciano and A. Sirlin, Nucl. Phys. B 189:442 (1981)ADSCrossRefGoogle Scholar
  20. 4j.
    (II); J. Fleischer and F. Jegerlehner, Phys. Rev. D 23:2001 (1981);ADSGoogle Scholar
  21. 4k.
    D. Yu. Bardin, P. Ch. Christova and O. M. Fedorenko, Nucl. Phys. B 175:435 (1980);ADSCrossRefGoogle Scholar
  22. 4l.
    D. Yu. Bardin, P. Ch. Christova and O. M. Fedorenko, Nucl. Phys. B ibid., B 197:1 (1982); preprint PHE 88–15 and references therein;ADSCrossRefGoogle Scholar
  23. 4m.
    C. H. Llewellyn-Smith and J. F. Wheater, Phys.Lett. 105B:486 (1981);Google Scholar
  24. 4n.
    J. F. Wheater and C. H. Llewellyn-Smith, Nucl Phys. B 208:27 (1982);ADSCrossRefGoogle Scholar
  25. 4o.
    S. Sakakibara, Phys. Rev. D 24:1149 (1981);ADSGoogle Scholar
  26. 4p.
    K. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys. 64:707 (1980);ADSCrossRefGoogle Scholar
  27. 4q.
    K. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Prog. Theor. Phys.ibid., 65:1001 (1981);ADSCrossRefGoogle Scholar
  28. 4r.
    M. Igarashi, N. Nakazawa, T. Shimada and Y. Shimizu, Nucl. Phys. B 263:347 (1986);ADSCrossRefGoogle Scholar
  29. 4s.
    F. Antonelli, G. Corbo, M. Consoli and O. Pellegrino, Nucl Phys. B 183:195 (1981);ADSCrossRefGoogle Scholar
  30. 4t.
    E. A. Paschos and M. Wirbel, Nucl Phys. B 194:189 (1982);ADSCrossRefGoogle Scholar
  31. 4u.
    M. Consoli, S. Lo Presti and L. Maiani, Nucl Phys. B 223:474 (1983);ADSCrossRefGoogle Scholar
  32. 4v.
    W. Wetzel, Nucl Phys. B 227:1 (1983);ADSCrossRefGoogle Scholar
  33. 4w.
    J. P. Cole in “Trieste Workshop on Radiative Corrections in SU(2)L × U(1),” B. W. Lynn and J. F. Wheater, eds., World Scientific Publ. Co., Singapore (1984); Sussex preprint (March 1983);Google Scholar
  34. 4x.
    R. W. Brown, R. Decker and E. A. Paschos, Phys. Rev. Lett. 52:1192 (1984);Google Scholar
  35. 4y.
    W. Hollik and H.-J. Timme, Z. Phys. C 33:125 (1986);ADSCrossRefGoogle Scholar
  36. 4z.
    B. W. Lynn et al, SLAC-PUB-4128 (1988);Google Scholar
  37. 4aa.
    B. W. Lynn and R. G. Stuart, Nucl Phys. B 253:216 (1985);ADSCrossRefGoogle Scholar
  38. 4ab.
    B. W. Lynn and D. C. Kennedy, SLAC-PUB-4039 (1986) and references therein;Google Scholar
  39. 4ac.
    M. Bohm, H. Spiesberger and W. Hollik, Fortschr. Phys. 34:687 (1986); W. F. L. Hollik, DESY preprint 88–188 and references therein.Google Scholar
  40. 5.
    G. ’t Hooft and M. Veltman, Nucl Phys. 544:189 (1972).CrossRefGoogle Scholar
  41. 6.
    S. Jadach and B. F. L. Ward, to appear.Google Scholar
  42. 7.
    B. W. Lee and J. Zinn-Justin, Phys. Rev. D 5:3121,3137,3155 (1972);ADSCrossRefGoogle Scholar
  43. 7a.
    Benjamin W. Lee, Phys. Rev. Dibid., 9:933 (1974);ADSCrossRefGoogle Scholar
  44. 7a.
    G. ’t Hooft and M. Veltman, Nucl Phys. B 50:318 (1972).CrossRefGoogle Scholar
  45. 8.
    See, for example, M. Chanowitz, M. Furman and I. Hinchliffe, Nucl Phys. B 159:225 (1979).ADSCrossRefGoogle Scholar
  46. 9.
    See, for example, A. Rebhan, Phys. Rev. D 39:3101 (1989); A. Shiekh, IC/88/346 (1988) and references therein.ADSCrossRefGoogle Scholar
  47. 10.
    See, for example, J. D. Bjorken and S. D. Drell, “Relativistic Quantum Fields,” McGraw-Hill Book Co., New York (1965).MATHGoogle Scholar
  48. 11.
    S. Weinberg, Phys. Rev. D 8:3497 (1973);ADSCrossRefGoogle Scholar
  49. 11a.
    G. ’t Hooft, Nucl Phys. B 61:455 (1973).ADSCrossRefGoogle Scholar
  50. 12.
    See, for example, W. J. Marciano and A. Sirlin, Phys. Rev. D 36:2191 (1987).ADSCrossRefGoogle Scholar
  51. 13.
    See, for example, The CERN Electro-Weak Generators Working Group Report, R. Kleiss, ed., to appear.Google Scholar
  52. 14.
    R. Stuart, private communications (1987, 1988);Google Scholar
  53. 14a.
    Z. Was, presentation at this meeting (1989).Google Scholar
  54. 15.
    Most of this large m t difference between rows 1 and 2 is due to a difference in the degree of resummation in the two calculations (W. Hollik, private communication, 1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • B. F. L. Ward
    • 1
    • 2
    • 3
  1. 1.Theory DivisionCERNGenevaSwitzerland
  2. 2.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA
  3. 3.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations