Results on R from PEP, PETRA, TRISTAN, and SLC

  • Wim de Boer
Part of the NATO ASI Series book series (NSSB, volume 233)


We discuss the determination of the Standard Model parameters α s , M z , and sin2 θw from the total hadronic cross section in e + e - annihilation at centre of mass energies between 7 and 93 GeV. At the highest TRISTAN energies, the tail of the Z 0 resonance does increase R by 50%. Such a sizeable increase allows a direct measurement of M z . However, this measurement turns out to be somewhat below the direct value measured at SLC at energies around the Z 0-resonance. This has led to speculation about possible new physics, although statistically the effect is not too significant (less than 2 standard deviations). We study in detail if other effects, like normalization errors or higher order radiative corrections could reduce the difference. The radiative corrections at TRISTAN energies can be calculated more precisely with the new knowledge of the Z 0- mass and the correspondingly improved value for the top mass (120±35±20 GeV/c2), resulting from the combination with the value of sin2 θ w from low energy measurements.

If third order QCD contributions are taken into account, one finds \( {\Lambda _{\overline {MS} }} = 0.26_{ - 0.13}^{ + 0.16} \) GeV, which corresponds to αs (34 GeV) = 0.144 ± 0.015 and αs(91 GeV) = 0.122 ± 0.011. From the combined R measurements one finds that near the Z 0-resonance the infinite QCD series 1 + α s /π +.. is 1.046±0.006. We study the effect of changing the renormalization scale of a, and find that the third order QCD corrections, which are larger than the second order ones for the usual scale Q = \( \sqrt s \) are smaller than the second order contributions at other scales.


Gauge Boson Radiative Correction Loop Correction Initial State Radiation Electroweak Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MARK-II Coll., G.S. Abrams et al., Phys. Rev. Lett. 63(1989) 724ADSCrossRefGoogle Scholar
  2. [2]
    UA1 Coll., C. Albajar et al., CERN-EP/88–168, November 1988, to be published in Z. Physik C, UA2 Coll.,Google Scholar
  3. [2a]
    R. Ansari et al., Phys. Lett. 186B (1987) 440.ADSGoogle Scholar
  4. [2b]
    CDF Coll., F. Abe et al., Phys. Rev. Lett.63 (1989) 720ADSCrossRefGoogle Scholar
  5. [3]
    AMY Coll., T. Mori et al., Phys. Lett. 218B (1989) 499ADSGoogle Scholar
  6. [4]
    G. d’Agostini, W. de Boer, and G. Grindhammer, DESY Report 89–057, to be published in Phys. Lett. BGoogle Scholar
  7. [5]
    T. Kamae, UT-HE-Preprint-88–05, published in Proc. of 24th Int. Conf. on High Energy Physics, Munich (1988), Eds. R. Kotthaus and J.H. Kühn, p. 156Google Scholar
  8. [6]
    T. Tauchi, KEK-Preprint-88–39, to be published in Proc. of Multiparticle Dynamics, Arles, France (1988)Google Scholar
  9. [7]
    T. Nozaki, presented at Renc. de Moriond, Les Arcs, France (1989)Google Scholar
  10. [8]
    G. d’Agostini, W. de Boer, and G. Grindhammer, Contr. to 24th Int. Conf. on High Energy Physics, Munich (1988)Google Scholar
  11. [9]
    G. d’Agostini, Proc. Renc. de Moriond (1987), to be publishedGoogle Scholar
  12. [10]
    W. de Boer, SLAC-Pub 4482, Proc. of the Xth WARSAW Symposium on Elementary Particle Physics, Kazimierz, Ed. Z. Ajduk, Poland, (1987), p. 503Google Scholar
  13. [11]
    W. de Boer, Proc. of 24th Int. Conf. on High Energy Physics, Munich (1988), Eds. R. Kotthaus and J.H. Kühn, p. 905Google Scholar
  14. [12]
    W. de Boer, DESY 89–067. to be published in Proc. of the Ringberg Workshop on Radiative Corr., Munich (1989), Ed. H. KühnGoogle Scholar
  15. [13]
    S. Iwata, TRISTAN Results presented at the IXth Int. Conf. on Phys. in Collision, Jerusalem, June, 1989Google Scholar
  16. [14]
    A.A. Pankov and C. Verzegnassi, CERN-TH.5373/89Google Scholar
  17. [15]
    CELLO Coll., H.J. Behrend et al., Phys. Lett. 183B (1987) 400ADSGoogle Scholar
  18. [16]
    M. Dine, J. Sapirstein, Phys. Rev. Lett. 43 (1979) 668ADSCrossRefGoogle Scholar
  19. [16a]
    K.G. Chetyrkin et al., Phys. Lett. 85B (1979) 277ADSGoogle Scholar
  20. [16b]
    W. Celmaster, R.J. Gonsalves, Phys. Rev. Lett. 44 (1980) 560ADSCrossRefGoogle Scholar
  21. [17]
    S.G. Gorishny, A.L. Kataev, and S.A. Larin, Hadron Structure ’87, Proc, Smolenice, Czechoslovakia, Physics and Applications, Vol. 14 (1988) 180, and preprint JINR, E2–88-254Google Scholar
  22. [18]
    T. Sjöstrand, Comp. Phys. Coram. 27 (1982) 243,ADSCrossRefGoogle Scholar
  23. [18a]
    T. Sjöstrand, Comp. Phys. Coram. 28 (1983) 229ADSCrossRefGoogle Scholar
  24. [18b]
    T. Sjöstrand and M. Bengtsson, Comp. Phys. Commun. 43 (1987)367ADSCrossRefGoogle Scholar
  25. [19]
    F.A. Berends, R. Kleiss, S. Jadach, Comp. Phys. Commun. 29 (1983) 185ADSCrossRefGoogle Scholar
  26. [20]
    W. Hollik, DESY 88–188, December 1988, and references there inGoogle Scholar
  27. [21]
    G. Burgers, CERN-TH/5119/88, G. Burgers and W. Hollik, CERN-TH5131/88, both published in the Yellow Book on Polarization at LEP (CERN- 88–06, Vol. 2)Google Scholar
  28. [22]
    A. Sirlin, Phys. Rev. D22(1980) 971ADSGoogle Scholar
  29. [23]
    W.J. Marciano, Phys. Rev. D29 (1984) 580ADSGoogle Scholar
  30. [24]
    Particle Data Group, M. Aguilar-Benitez et al. Phys. Lett. B204 (1988) 1ADSGoogle Scholar
  31. [25]
    P.M. Stevenson, Phvs. Rev. D23 (1981) 2916Google Scholar
  32. [26]
    T. Kinoshita, J. Math. Phys. 3 (1962) 650ADSMATHCrossRefGoogle Scholar
  33. [26a]
    T.D. Lee and M. Nauenberg Phys. Rev. D133 (1964) 1549MathSciNetADSCrossRefGoogle Scholar
  34. [27]
    F. A. Berends, G. J. H. Burgers, and W. L. van Neerven, Phys. Lett. 185B (1987) 395;ADSGoogle Scholar
  35. [27a]
    F. A. Berends, G. J. H. Burgers, and W. L. van Neerven, Nucl. Phys. B297 (1988) 429ADSCrossRefGoogle Scholar
  36. [28]
    W. de Boer, SLAC-Pub 4682, Nucl. Instr. Meth. A278 (1989)687ADSGoogle Scholar
  37. [29]
    D.R. Yennie, S.C. Frautschi and H. Suura, Annals of Phys.13 (1961) 379ADSCrossRefGoogle Scholar
  38. [30]
    F. A. Berends, G. J. H. Burgers, and W. L. van Neerven, Nucl. Phys. B297 (1988) 429ADSCrossRefGoogle Scholar
  39. [31]
    J. P. Alexander, private communication and J. P. Alexander, G. Bonvicini, P. S. Drell and R. Frey, Phys. Rev. D37 (1988) 56ADSGoogle Scholar
  40. [32]
    M. Greco, Riv. Nuovo Cim. 11(1988) 5:1CrossRefGoogle Scholar
  41. [32a]
    M. Greco, Phys. Lett. 177B (1986) 97ADSGoogle Scholar
  42. [32b]
    See also Berends and Komen, Nucl. Phys. B115 (1976) 114ADSCrossRefGoogle Scholar
  43. [33]
    The higher order calculations have been implemented in the standard μ-pair generator of F.A. Berends, R. Kleiss, and S. Jadach (Comp. Phys. Commun. 29 (1983) 185) by J.P. Alexander (private communication) and adapted for quarks by W. de Boer, Mark-II Note 210ADSCrossRefGoogle Scholar
  44. [34]
    F. A. Berends and R. Kleiss, Nucl. Phys. B228(1983) 537. This Bhabha generator was first exponentiated by M. Levi (private communication) according to a prescription from Tsai, SLAC Pub 3129 (1983). We modified it in order to have the same exponentiation for hadrons and Bhabhas; we know that this exponentiation procedure agrees with the exact second order calculation in case of μ -pair productionADSCrossRefGoogle Scholar
  45. [35]
    R. Marshall, RAL-Preprint-88–049, submitted to Z. Phys. CGoogle Scholar
  46. [36]
    J. Ellis and G.L. Fogli, Phys. Lett B213 (1988) 526ADSGoogle Scholar
  47. [37]
    G.L. Fogli and D. Haidt, Z. Physik C40 (1988) 379ADSGoogle Scholar
  48. [38]
    G.L. Fogli. Bari Preprint BA-TH/40–89 (1989), to be publishedGoogle Scholar
  49. [39]
    M. Boehm, W. Hollik, H. Spiesberger, Fort. der Physik 34 (1986)687ADSGoogle Scholar
  50. [40]
    J. Fujimoto, Y. Shimizu, Mod. Phys. Lett. A3 (1088) 581ADSGoogle Scholar
  51. [41]
    AMY Coll., H. Sagawa et al., Phys. Rev. Lett. 60 (1988) 93.ADSCrossRefGoogle Scholar
  52. [41a]
    AMY Coll., H. Sagawa et al., Phys. Lett. 218B (1989) 499,ADSGoogle Scholar
  53. [41b]
    G. Kim. Topical Conference, KEK (1989);Google Scholar
  54. [41c]
    TOPAZ Coll., I. Adachi et al., Phys. Rev. Lett. 60 (1988) 97ADSCrossRefGoogle Scholar
  55. [41d]
    S. Suzuki, Topical Conference, KEK (1989);Google Scholar
  56. [41e]
    VENUS Coll., H. Yoshida et al., Phys. Lett. 198B (1987) 570ADSGoogle Scholar
  57. [41f]
    K. Ogawa, Topical Conference, KEK (1989)Google Scholar
  58. [42]
    D.W. Duke, R.G. Roberts, Phys. Reports 120 (1985) 275ADSCrossRefGoogle Scholar
  59. [43]
    C.J. Maxwell and J.A. Nicholls, Phys. Lett. B213 (1988) 217ADSGoogle Scholar
  60. [43a]
    A.P. Contogouris and N. Mebarki, Phys. Rev. D39 (1989) 1464ADSGoogle Scholar
  61. [44]
    D. Gross and F. Wilczek, Phys.Rev. Lett. 30(1973)1323;Google Scholar
  62. [44a]
    D. Gross and F. Wilczek, Phys. Rev. D8 (1973) 3633ADSGoogle Scholar
  63. [44b]
    H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346ADSCrossRefGoogle Scholar
  64. [44c]
    O. Tarasov, A. Vladimirov, and A. Zharkov, Phys. Lett. 93B(1980)429ADSGoogle Scholar
  65. [45]
    G. Grunberg, Phys. Lett. B95 (1980) 70ADSGoogle Scholar
  66. [46]
    S. Brodsky, G.P. Lepage and P. Mackenzie, Phys. Rev. D28 (1983) 493Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wim de Boer
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMunich 40Germany

Personalised recommendations