Exclusive Exponentiation in the Monte Carlo Yennie-Frautschi-Suura Approach

  • Stanislaw Jadach
  • B. F. L. Ward
Part of the NATO ASI Series book series (NSSB, volume 233)


A closer look is taken into various types of the so-called “exponentiation” procedures in QED. In particular the question of the difference between the common (ad hoc) inclusive exponentiation and the exclusive Yennie-Frautschi-Suura exponentiation is examined. The discussion is limited to the initial state bremsstrahlung in e + e - annihilation. Numerical results from the YFS2 Monte Carlo are used to illustrate the discussion.


Total Cross Section Differential Cross Section Virtual Photon Feynman Rule Integrate Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Berends and W. L. Van Neerven and G. J. H. Burgers, Nucl. Phys. B297 (1988) 429.ADSCrossRefGoogle Scholar
  2. 2.
    D. R. Yennie, S. C. Frautschi and H. Suura, Annals of Phys. 13 (1961) 379.ADSCrossRefGoogle Scholar
  3. 3.
    K. T. Mahanthappa, Phys. Rev. 126 (329) 1962.Google Scholar
  4. 4.
    S. Jadach, “Yennie-Frautschi-Suura soft photons in the Monte Carlo generators”, preprint of Max-Plack-Institut, München, MPI-PAE/PTh 6/87 (1987).Google Scholar
  5. 5.
    S. Jadach and B. F. L. Ward, SLAC-PUB-4543 (1988),Google Scholar
  6. 5a.
    S. Jadach and B. F. L. Ward, Phys. Rev. D38 (1988) 2897.ADSGoogle Scholar
  7. 6.
    S. Jadach and B.F.L. Ward, “YFS2 -the second order [monte Carlo for fermion pair production at LEP/SLC with the initial state radiation of two hard and multiple soft photons”, TPJU-15/88, SLAC-PUB-4834 report, to appear in Computer Phys. Commun.Google Scholar
  8. 7.
    S. Jadach, Z. Was, R. G. S. Stuart, B. F. L. Ward and W. Hollik, “KORALZ the Monte Carlo program for τ and μ pair production processes at LEP/SLC”, unpublished, may be obtained from Z. Was: WASM @ CERNVM.Google Scholar
  9. 8.
    S. Jadach and B.F.L. Ward, in Proceedings of the Ringberg-workshop, April 1989, CERN report TH.5399/89.Google Scholar
  10. 9.
    G. Bonneau and F. Martin, Nucl. Phys. 177 (1988) 56.Google Scholar
  11. 10.
    E. A. Kuraiev and V. S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466.Google Scholar
  12. 11.
    J. P. Alexander, G. Bonvicini, P. S. Drell and R. Frey, “Radiative Corrections to the Z 0 resonance”, SLAC-PUB-4376, Phys. Rev. D37 (1988) 56.ADSGoogle Scholar
  13. 12.
    G. Burgers, “The shape and size of the Z resonance”, in “Polarization at LEP”, CERN report 88–06, eds. J. Ellis and R. Peccei, CERN, Geneva, (1988).Google Scholar
  14. 13.
    M. Greco, G. Pancheri and Y. N. Srivastava, Nucl. Phys. B101 (1975) 234ADSCrossRefGoogle Scholar
  15. 13a.
    M. Greco, G. Pancheri and Y. N. Srivastava, Phys. Lett. 56B (1975) 367.ADSGoogle Scholar
  16. 14.
    S. Jadach and M. Skrzypek, Jagellonian University preprint TPJU-3/89, January 1989.Google Scholar
  17. 15.
    B. F. L. Ward, Phys. Rev. D36 (1987) 939ADSGoogle Scholar
  18. 15a.
    B. F. L. Ward, Acta Phys. Pol. B19 (1988) 465.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Stanislaw Jadach
    • 1
    • 2
  • B. F. L. Ward
    • 3
    • 4
  1. 1.Institute of PhysicsJagellonian UniversityKrakówPoland
  2. 2.CERNGenevaSwitzerland
  3. 3.Department of Physics and AstronomyThe University of TennesseeKnoxvilleUSA
  4. 4.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA

Personalised recommendations