Skip to main content

Range-Dependent Bottom-Limited Propagation Modelling with the Parabolic Equation

  • Chapter
Bottom-Interacting Ocean Acoustics

Part of the book series: NATO Conference Series ((NATOCS,volume 5))

Abstract

It is demonstrated that mode-coupling effects are included in the parabolic equation method. Propagation over sloping bottoms is then studied demonstrating various mode-cutoff and modecoupling phenomena. Finally, propagation over a seamount is considered, which includes not only up- and down-slope propagation but also diffraction over the top of the seamount. Some of the theoretical results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ewing, J. L. Worzel and C. L. Pekeris, Propagation of sound in the ocean, GSA Memoir 27, Geological Society of America, New York, N.Y. (1948).

    Google Scholar 

  2. I. Tolstoy and C. S. Clay, “Ocean Acoustics”, McGraw-Hill, New York, N.Y. (1966).

    Google Scholar 

  3. R. H. Ferris, Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water, J. Acoustical Society America 52:981–988 (1972).

    Article  Google Scholar 

  4. F. Ingenito, Measurements of mode attenuation coefficients in shallow water, J. Acoustical Society America 53:858–863 (1973).

    Article  Google Scholar 

  5. F. Ingenito, R. H. Ferris, W. A. Kuperman and S. N. Wolf, Shallow water acoustics: summary report, NRL Report 8179, U.S. Naval Research Laboratory, Washington, D.C. (1978).

    Google Scholar 

  6. A. D. Pierce, Extension of the method of normal modes to sound propagation in an almost stratified medium, J. Acoustical Society America 37:19–27 (1965).

    Article  Google Scholar 

  7. D. M. Milder, Ray and wave invariants for SOFAR channel propagation, J. Acoustical Society America 46:1259–1263 (1969).

    Article  Google Scholar 

  8. A. O. Williams, Normal-mode methods in propagation of underwater sound, in: “Underwater Acoustics”, R. W. B. Stephens, ed., Wiley-Interscience, London, U.K. (1970), pp. 23–56.

    Google Scholar 

  9. A. Nagl, H. Uberall, A. J. Haug and G. L. Zarur, Adiabatic mode theory of underwater sound propagation in range-dependent environment, J. Acoustical Society America 63: 739–749 (1978).

    Article  Google Scholar 

  10. S. R. Rutherford and K. E. Hawker, An examination of the influence of range dependence of the ocean bottom on the adiabatic approximation, J. Acoustical Society America 66:1145–1151 (1979).

    Article  Google Scholar 

  11. S. R. Rutherford, An examination of multipath processes in a range-dependent ocean environment within the context of adiabatic mode theory, J. Acoustical Society America 66: 1482–1486 (1979).

    Article  Google Scholar 

  12. F. S. Chwieroth, A. Nagl, H. Uberall, R. D. Graves and G. L. Zarur, Mode coupling in a sound channel with range-dependent parabolic velocity profile, J. Acoustical Society America 64:1105–1112 (1978).

    Article  Google Scholar 

  13. F. D. Tappert, The parabolic approximation method, in: “Wave Propagation and Underwater Acoustics, Lecture Notes in Physics 70”, J. B. Keller and J. S. Papadakis, eds., Springer-Verlag, New York, N.Y. (1977): pp. 224–287.

    Chapter  Google Scholar 

  14. F. B. Jensen and H. R. Krol, The use of the parabolic equation method in sound-propagation modelling, SACLANTCEN SM-72, SACLANT ASW Research Centre, La Spezia, Italy (1975).

    Google Scholar 

  15. F. B. Jensen and W. A. Kuperman, Sound propagation in a wedge-shaped ocean with a penetrable bottom, J. Acoustical Society America 67: 1564–1566 (1980).

    Article  Google Scholar 

  16. W. A. Kuperman and F. B. Jensen, Sound propagation modelling, in: “Underwater Acoustics and Signal Processing”, L. Bjørnø, ed., Reidel Publishing Co, Dordrecht, The Netherlands (1980).

    Google Scholar 

  17. F. B. Jensen and W. A. Kuperman, Environmental acoustic modelling at SACLANTCEN, SACLANTCEN SR-34, SACLANT ASW Research Centre, La Spezia, Italy (1979). [AD A 081 853]

    Google Scholar 

  18. F. B. Jensen and M. C. Ferla, SNAP: the SACLANTCEN normal-mode acoustic propagation model, SACLANTCEN SM-121, SACLANT ASW Research Centre, La Spezia, Italy (1979). [AD A 067 256]

    Google Scholar 

  19. L. I. Schiff, “Quantum Mechanics”, McGraw-Hill, New York, N.Y. (1968): p.292.

    Google Scholar 

  20. A. B. Coppens and J. V. Sanders, Propagation of sound from a fluid wedge into a fast fluid bottom. (This volume).

    Google Scholar 

  21. G. R. Ebbeson, J. M. Thorleifson and R. G. Turner, Shadowing of sound propagation by a seamount in the Northeast Pacific, J. Acoustical Society America 64:S76 (1978).

    Article  Google Scholar 

  22. H. Medwin and R. Spaulding, The seamount as a diffracting body. (This volume).

    Google Scholar 

  23. F. D. Tappert, Selected applications of the parabolic equation method in underwater acoustics, in: “Proceedings of International Workshop on Low-Frequency Propagation and Noise”, Maury Center for Ocean Sciences, Washington, D.C. (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Jensen, F.B., Kuperman, W.A. (1980). Range-Dependent Bottom-Limited Propagation Modelling with the Parabolic Equation. In: Kuperman, W.A., Jensen, F.B. (eds) Bottom-Interacting Ocean Acoustics. NATO Conference Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9051-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9051-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9053-4

  • Online ISBN: 978-1-4684-9051-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics