Range-Dependent Bottom-Limited Propagation Modelling with the Parabolic Equation

  • F. B. Jensen
  • W. A. Kuperman
Part of the NATO Conference Series book series (NATOCS, volume 5)


It is demonstrated that mode-coupling effects are included in the parabolic equation method. Propagation over sloping bottoms is then studied demonstrating various mode-cutoff and modecoupling phenomena. Finally, propagation over a seamount is considered, which includes not only up- and down-slope propagation but also diffraction over the top of the seamount. Some of the theoretical results are compared with experimental data.


Acoustical Society Mode Coupling Mode Number Sound Propagation Grazing Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ewing, J. L. Worzel and C. L. Pekeris, Propagation of sound in the ocean, GSA Memoir 27, Geological Society of America, New York, N.Y. (1948).Google Scholar
  2. 2.
    I. Tolstoy and C. S. Clay, “Ocean Acoustics”, McGraw-Hill, New York, N.Y. (1966).Google Scholar
  3. 3.
    R. H. Ferris, Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water, J. Acoustical Society America 52:981–988 (1972).CrossRefGoogle Scholar
  4. 4.
    F. Ingenito, Measurements of mode attenuation coefficients in shallow water, J. Acoustical Society America 53:858–863 (1973).CrossRefGoogle Scholar
  5. 5.
    F. Ingenito, R. H. Ferris, W. A. Kuperman and S. N. Wolf, Shallow water acoustics: summary report, NRL Report 8179, U.S. Naval Research Laboratory, Washington, D.C. (1978).Google Scholar
  6. 6.
    A. D. Pierce, Extension of the method of normal modes to sound propagation in an almost stratified medium, J. Acoustical Society America 37:19–27 (1965).CrossRefGoogle Scholar
  7. 7.
    D. M. Milder, Ray and wave invariants for SOFAR channel propagation, J. Acoustical Society America 46:1259–1263 (1969).CrossRefGoogle Scholar
  8. 8.
    A. O. Williams, Normal-mode methods in propagation of underwater sound, in: “Underwater Acoustics”, R. W. B. Stephens, ed., Wiley-Interscience, London, U.K. (1970), pp. 23–56.Google Scholar
  9. 9.
    A. Nagl, H. Uberall, A. J. Haug and G. L. Zarur, Adiabatic mode theory of underwater sound propagation in range-dependent environment, J. Acoustical Society America 63: 739–749 (1978).CrossRefGoogle Scholar
  10. 10.
    S. R. Rutherford and K. E. Hawker, An examination of the influence of range dependence of the ocean bottom on the adiabatic approximation, J. Acoustical Society America 66:1145–1151 (1979).CrossRefGoogle Scholar
  11. 11.
    S. R. Rutherford, An examination of multipath processes in a range-dependent ocean environment within the context of adiabatic mode theory, J. Acoustical Society America 66: 1482–1486 (1979).CrossRefGoogle Scholar
  12. 12.
    F. S. Chwieroth, A. Nagl, H. Uberall, R. D. Graves and G. L. Zarur, Mode coupling in a sound channel with range-dependent parabolic velocity profile, J. Acoustical Society America 64:1105–1112 (1978).CrossRefGoogle Scholar
  13. 13.
    F. D. Tappert, The parabolic approximation method, in: “Wave Propagation and Underwater Acoustics, Lecture Notes in Physics 70”, J. B. Keller and J. S. Papadakis, eds., Springer-Verlag, New York, N.Y. (1977): pp. 224–287.CrossRefGoogle Scholar
  14. 14.
    F. B. Jensen and H. R. Krol, The use of the parabolic equation method in sound-propagation modelling, SACLANTCEN SM-72, SACLANT ASW Research Centre, La Spezia, Italy (1975).Google Scholar
  15. 15.
    F. B. Jensen and W. A. Kuperman, Sound propagation in a wedge-shaped ocean with a penetrable bottom, J. Acoustical Society America 67: 1564–1566 (1980).CrossRefGoogle Scholar
  16. 16.
    W. A. Kuperman and F. B. Jensen, Sound propagation modelling, in: “Underwater Acoustics and Signal Processing”, L. Bjørnø, ed., Reidel Publishing Co, Dordrecht, The Netherlands (1980).Google Scholar
  17. 17.
    F. B. Jensen and W. A. Kuperman, Environmental acoustic modelling at SACLANTCEN, SACLANTCEN SR-34, SACLANT ASW Research Centre, La Spezia, Italy (1979). [AD A 081 853]Google Scholar
  18. 18.
    F. B. Jensen and M. C. Ferla, SNAP: the SACLANTCEN normal-mode acoustic propagation model, SACLANTCEN SM-121, SACLANT ASW Research Centre, La Spezia, Italy (1979). [AD A 067 256]Google Scholar
  19. 19.
    L. I. Schiff, “Quantum Mechanics”, McGraw-Hill, New York, N.Y. (1968): p.292.Google Scholar
  20. 20.
    A. B. Coppens and J. V. Sanders, Propagation of sound from a fluid wedge into a fast fluid bottom. (This volume).Google Scholar
  21. 21.
    G. R. Ebbeson, J. M. Thorleifson and R. G. Turner, Shadowing of sound propagation by a seamount in the Northeast Pacific, J. Acoustical Society America 64:S76 (1978).CrossRefGoogle Scholar
  22. 22.
    H. Medwin and R. Spaulding, The seamount as a diffracting body. (This volume).Google Scholar
  23. 23.
    F. D. Tappert, Selected applications of the parabolic equation method in underwater acoustics, in: “Proceedings of International Workshop on Low-Frequency Propagation and Noise”, Maury Center for Ocean Sciences, Washington, D.C. (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • F. B. Jensen
    • 1
  • W. A. Kuperman
    • 1
  1. 1.SACLANT ASW Research CentreLa SpeziaItaly

Personalised recommendations