Advertisement

Propagation of Sound from a Fluid Wedge into a Fast Fluid Bottom

  • Alan B. Coppens
  • James V. Sanders
Part of the NATO Conference Series book series (NATOCS, volume 5)

Abstract

The ocean waters lying above the continental shelf often can be modeled with a fair degree of accuracy by a fluid wedge overlying a bottom. In those cases where the bottom consists of unconsolidated sediments, it is also an admissible approximation to treat the bottom as a fluid. See Fig. 1. If the speed of sound in the bottom exceeds that in the water layer (a fast bottom), the wedge can support trapped normal-mode propagation. Let acoustic energy from a distant source propagate up the slope towards the apex of the wedge. As the apex is approached and the local thickness of the wedge decreases, the modes carrying the energy will experience the condition for cutoff at varying distances from the apex. We can estimate the depth at which a given normal mode would be cut off by calculating the depth H for which the equivalent mode would just be cut off in a layer of constant depth. If the wedge angle is 3 the lowest mode of propagation would experience cutoff when the distance from the apex decreases to a dump distance X = H/β, the next mode at the distance 3X, the third at 5X, and so forth. Thus, as the acoustic energy propagates towards the apex, successively lower modes will be cut off and the energy contained in each of them transmitted into the bottom.

Keywords

Normal Mode Critical Angle Wedge Angle Seismic Wave Propagation Naval Postgraduate School 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bradley and A.A. Hudimac, The Propagation of Sound in a Wedge Shaped Shallow Water Duct, Naval Ordnance Laboratory NOLTR 70–235 (1970).Google Scholar
  2. 2.
    P.K. Tien, G. Smolinsky, and R.J. Martin, Radiation Fields of a Tapered Film and a Novel Film-to-Fiber Coupler, IEEE MIT-23. 79 (1975).CrossRefGoogle Scholar
  3. 3.
    D. Marcuse, Mode Conversion Caused by Surface Imperfections of a Dielectric Slab Waveguide, Bell Syst. Tech. J. 48, 3187 (1969).Google Scholar
  4. 4.
    R.I. Odom, Jr., R.A. Sigelmann, G. Mitchell, and D.K. Reynolds, Navy Contract N66001–77-C-0264 Tech. Rept. #209 (1978).Google Scholar
  5. 5.
    V.K. Kuznetsov, Emergence of Normal Modes Propagating in a Wedge on a Half-Space from the Former into the Latter, Sov. Phys. Acoust. 19, 241 (1973).Google Scholar
  6. 6.
    F.B. Jensen and W.A. Kuperman, Sound Propagation in a Wedge-Shaped Ocean with a Penetrable Bottom, J. Acoust. Soc. Am. 67, 1564 (1980).CrossRefGoogle Scholar
  7. 7.
    A.B. Coppens, Theoretical Study of the Propagation of Sound into a Fast Bottom from an Overlying Fluid Wedge, J. Acoust. Soc. Am. 31, Suppl. 1 (1978).Google Scholar
  8. 8.
    A.B. Coppens, The Theory: Transmission of Acoustic Waves into a Fast Fluid Bottom from a Converging Fluid Wedge, ONR/NRL Workshop in Seismic Wave Propagation in Shallow Water (1978).Google Scholar
  9. 9.
    J.N. Edwards, A Preliminary Investigation of Acoustic Energy Transmission from a Tapered Fluid Layer into a Fast Bottom, Naval Postgraduate School Technical Report, NPS-33JE76121 (1976).Google Scholar
  10. 10.
    G. Netzorg, Sound Transmission from a Tapered Fluid Layer into a Fast Bottom, M.S. Thesis, Naval Postgraduate School (1977).Google Scholar
  11. 11.
    J.V. Sanders, A.B. Coppens, and G. Netzorg, Experimental Study of the Propagation of Sound into a Fast Bottom from an Overlying Fluid Wedge, (A) J. Acoust. Soc. Am. 31, Suppl. 1, (1978).Google Scholar
  12. 12.
    J.V. Sanders, The Experiment: Transmission of Acoustic Waves into a Fast Bottom from a Converging Fluid Wedge, ONR/NRL Workshop in Seismic Wave Propagation in Shallow Water (1978).Google Scholar
  13. 13.
    M. Kawamura and I. Ioannou, Pressure on the Interface Between a Converging Fluid Wedge and a Fast Fluid Bottom, M.S. Thesis, Naval Postgraduate School (1978).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Alan B. Coppens
    • 1
  • James V. Sanders
    • 1
  1. 1.Department of Physics and ChemistryNaval Postgraduate SchoolMontereyUSA

Personalised recommendations