Cerebral Sphingolipids in the Quaking Mouse

  • Julian N. Kanfer


There are over 300 mutant genes in the mouse which are characterized by a variety of specific phenotypic expressions (Green, 1966, pp. 87–150). The “Quaking” strain of mouse has been extensively characterized genetically and histologically by Sidman, Dickie and Appel (1964) and shown to bear an autosomal recessive gene (qk) which is responsible for abnormalities in central nervous system structure and function. Affected animals can be recognized by the twelfth day pospartum by an unsteady gait and tremor of the hindquarters. Tonic-clonic seizures are induced readily by sensory stimulation in the adult Quaking animal. The principal neuropathological findings in the Quaking mice is a generalized deficiency of myelin.


Glycogen Storage Disease Mutant Animal Metachromatic Leukodystrophy Brain Ganglioside Radioactive Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAMSON, M. B., NORTON, W. T., & KATZMAN, R. Study of ionic structures in phospholipids by infrared spectra. Journal of Biological Chemistry, 1965, 240, 2389–2395.PubMedGoogle Scholar
  2. AMES, B. N., & DUBIN, D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. Journal of Biological Chemistry, 1960, 235, 769–775.PubMedGoogle Scholar
  3. BANIK, N. L., & DAVISON, A. N. Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain. Biochemical Journal, 1969, 115, 1051–1062.PubMedGoogle Scholar
  4. BAUMANN, N. A., JACQUE, C. M., POLLET, S. A., & HARPIN, M. Fatty acid and lipid composition of the brain of a myelin deficient mutant, the “quaking” mouse. European Journal of Biochemistry, 1968, 4, 340–344.PubMedCrossRefGoogle Scholar
  5. BOWEN, D. M., & RADIN, N. S. Hydrolase activities in brain of neurological mutants: cerelro-side, galactosidase, nitrophenyl galactoside, hydrolase, nitrophenyl glucoside hydrolase and sulphatase. Journal of Neurochemistry, 1969, 16, 457–460.PubMedCrossRefGoogle Scholar
  6. BRADY, R. O. The sphingolipidoses. New England Journal of Medicine, 1966, 275, 312–318.PubMedCrossRefGoogle Scholar
  7. BURTON, R., Garcia-Bunuel, L., Golden, M. & Balfour, Y. Incorporation of radioactivity of D-glucosamine-1-C14, D-glucose-l-Cl4, D-galactose-l-C14 and DL-serine-3-C14 into rat brain glycolipids. Biochemistry, 1963, 2, 580–585.PubMedCrossRefGoogle Scholar
  8. CUZNER, M. L., & DAVISON, A. N. The lipid composition of rat brain myelin and subcellular fractions during development. Biochemical Journal, 1968, 106, 29–34.PubMedGoogle Scholar
  9. DAVISON, A. N., & GREGSON, N. K. The physiological role of cerebron sulphuric acid (sulphatide) in the brain. Biochemical Journal, 1962, 85, 558–568.PubMedGoogle Scholar
  10. DESAI, I. D. Regulation of lysosomal enzymes. I. Adaptive changes in enzyme activities during starvation and refeeding. Canadian Journal of Biochemistry, 1969, 47, 785–790.Google Scholar
  11. DIBENEDETTA, C., BRUNNGRABER, E. G., WHITNEY, G., BROWN, B. D., & ARO, A. Compositional patterns of sialofucohexo-samenoglycans derived from rat brain glycoproteins. Archives of Biochemistry and Biophysics, 1969, 131, 404–413.CrossRefGoogle Scholar
  12. DITTMER, J. C., & LESTER, R. C. A simple, specific spray for the detection of phospholipids in thin-layer chromatograms. Journal of Lipid Research, 1964, 5, 126–127.Google Scholar
  13. DUBOIS, M., GILLES, K. A., HAMILTON, J. K., REBERS, P. A., & SMITH, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28, 350–356.CrossRefGoogle Scholar
  14. FOLCH, J., CASALS, J., POPE, A., MEATH, J. A., LEBARRON, F. N., & LEES, M. Chemistry of myelin development. In S. R. Korey (Ed.) Biology of Myelin. New York: Hoeber-Harper Publ., 1959.Google Scholar
  15. FOLCH, J., LEES, N., & SLOANE-STANLEY, G. H. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 1957, 226, 497–509.PubMedGoogle Scholar
  16. FREYSZ, L., BIETH, R., & MANDEL, P. Kinetics of the biosynthesis of phospholipids in neurons and glial cells isolated from rat brain cortex. Journal of Neurochemistry, 1969, 16, 1417–1424.PubMedCrossRefGoogle Scholar
  17. FRIEDRICH, V. L., JR., & HAUSER, G. Psychosine and lactosylceromide biosynthesis in brain, spinal cord and peripheral nerve homogenates of Quaking mice. Federation Proceedings, 1970, 29, Abstract 924, 410.Google Scholar
  18. GALLI, C., & GALLI, D. C. Cerebroside and sulphatide deficiency in the brain of “Jumpy Mice,” a mutant strain of mice exhibiting neurological symptoms. Nature, 1969, 220, 165–166.CrossRefGoogle Scholar
  19. GALLI, C., KNEEBONE, G. M., & PAOLETTI, R. An inborn error of cerebroside biosynthesis as the molecular defect of the Jumpy Mouse brain. Life Sciences, 1969, 8, 911–918.PubMedCrossRefGoogle Scholar
  20. GREEN, M. C. Mutant genes and linkages. In E. L. Green (Ed.) Biology of the Laboratory Mouse (2nd Ed.). New York, New York: McGraw-Hill, 1966, pp. 87–150.Google Scholar
  21. HERS, H. G. Inborn lysosomal diseases. Gastroenterology, 1965, 48, 625–633.PubMedGoogle Scholar
  22. HIRANO, A., & DIMLUTZER, H. M. A structural analysis of the myelin sheath in the central nervous system. Journal of Cell Biology, 1967, 34, 555–567.PubMedCrossRefGoogle Scholar
  23. HOGAN, E. L., JOSEPH, K. C., & SCHMIDT, G. Composition of cerebral lipids in murine sudanophilic leucodystrophy. The Jumpy mutant. Journal of Neurochemistry, 1970, 17, 75–83.PubMedCrossRefGoogle Scholar
  24. HSIA, D. Y. Detection and treatment of inborn errors of metabolism associated with mental deficiency. In G. J. Martin and B. Kisch (Eds.), Enzymes in Mental Health. Philadelphia, Pennsylvania: J. B. Lippencott, Co., 1966.Google Scholar
  25. JACQUE, C. M., HARPIN, M. L., & BAUMANN, N. A. Brain lipid analysis of a myelin deficient mutant, the “Quaking” mouse. European Journal of Biochemistry, 1969, 11, 218–224.PubMedCrossRefGoogle Scholar
  26. KATZ, M., & BARONDES, S. H. Incorporation of mannose into mouse brain lipid. Biochemical and Biophysical Research Communications, 1969, 36, 511–517.CrossRefGoogle Scholar
  27. KAMPINE, J. P., KANFER, J. N., GAL, A. E., BRADLEY, R. M., & BRADY, R. O. Response of sphingolipid hydrolases in spleen and liver to increased erythrosytorhexis. Biochemica et Blophysica Acta, 1967, 137, 135–139.Google Scholar
  28. KANFER, J. N., & RICHARDS, R. L. Effect of puromycin on the incorporation of radioactive sugars into gangliosides in vivo. Journal of Neurochemistry, 1967, 14, 513–518.CrossRefGoogle Scholar
  29. KANFER, J., BRADLEY, R., & GAL, A. C. Effect of puromycin on the incorporation of erythro DL-(3H) sphingosine into sphingolipids. Journal of Neurochemistry, 1967, 14, 1095–1098.PubMedCrossRefGoogle Scholar
  30. KEAN, E. L. Separation of gluco- and galactocerebrosides by means of biorate thin-layer chromatography. Journal of Lipid Research, 1966, 7, 449–452.PubMedGoogle Scholar
  31. KISHIMOTO, Y., DAVIES, W. E., & RADIN, N. S. Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides and sulfatides as a function of age. Journal of Lipid Research, 1965, 6, 525–531.PubMedGoogle Scholar
  32. KJELLMAN, B., GAMSTROP, I., BRUN, A., OCKERMAN, P., & PALMGREN, B. Mannosidos is: A clinical and histopathologic study, Journal of Pediatrics, 1969, 75, 366–373.PubMedCrossRefGoogle Scholar
  33. KOSTIC, D., NUSSBAUM, J. L., & MANDEL, P. A study of brain gangliosides in “Jumpy” mutant mice. Life Sciences, 1969, 8, 1135–1143.PubMedCrossRefGoogle Scholar
  34. KURIHARA, T., NUSSBAUM, J. L., & MANDEL, P. 2′, 3′, cyclic nucleotide 3′-phosphohydrolase in the brain of the “Jumpy” mouse, a mutant with deficient myelination. Brain Research, 1969, 13, 401–403.PubMedCrossRefGoogle Scholar
  35. KURIHARA, T., & TSUKADA, Y. 2′, 3′-cyclic nucleotide 3′-phosphohydrolase in the developing chick brain and spinal cord. Journal of Neurochemistry, 1968, 15, 827–832.PubMedCrossRefGoogle Scholar
  36. LAPETINA, E. G., SOTO, E. F., & DEROBERTIS, E. DE. Gangliosides and acetylcholinesterase in isolated membranes of the rat-brain cortex. Biochemica et Biophysica Acta (Amst.), 1967, 135, 33–43.CrossRefGoogle Scholar
  37. MIETTINEN, T., & TAKKI-LUUKKAINEN, I. T. Use of butyl acetate in determination of sialic acid. Acta Chemica Scandinavica, 1959, 13, 856–858.CrossRefGoogle Scholar
  38. MORRELL, P. Personal communication.Google Scholar
  39. MOSER, H. W., MOSER, A. B., & MCKHANN, G. M. The dynamics of a lipidosis. Turnover of sulfatide, steroid sulfate and polysaccharide sulfate in metachromatic leukodystrophy. Archives of Neurology, 1967, 17, 494–511.PubMedCrossRefGoogle Scholar
  40. NESKOVIC, N. M., NUSSBAUM, J. L., & MANDEL, P. Enzymatic synthesis of psychosine in “Jimpy” mice brain. Federation of European Biochemical Societies, Letters, 1969, 3, 199–201.CrossRefGoogle Scholar
  41. NESKOVIC, N., NUSSBAUM, J. L., & MANDEL, P. Etude de la galactosy1-sphingosine transferase du cerveau de souris mutante “Quaking.” Comptes Rendus, Academie des Sciences, 1969, 269, 1125–1128.Google Scholar
  42. NORTON, W. T., & AUTILIO, L. A. The lipid composition of purified bovine brain myelin. Journal of Neurochemistry, 1966, 13, 213–222.PubMedCrossRefGoogle Scholar
  43. NUSSBAUM, J. L., NESKOVIC, N., & MANDEL, P. A study of lipid components in brain of the “Jimpy” mouse, a Mutant with myelin deficiency. Journal of Neurochemistry, 1969, 16, 927–934.PubMedCrossRefGoogle Scholar
  44. O’BRIEN, J. S. Stability of the myelin membrane. Science, 1965, 147, 1099–1107.PubMedCrossRefGoogle Scholar
  45. OCKERMAN, P. Mannosidosis: Isolation of oligosaccharide storage material from brain. Journal of Pediatrics, 1969, 75, 360–365.PubMedCrossRefGoogle Scholar
  46. PENICK, R. J., MEISLER, M. H., & MCCLUER, R. H. Thin-layer chromatographic studies of human brain gangliosides. Biochemica et Biophysica Acta, 1966, 116, 279–287.Google Scholar
  47. RADIN, N., MARTIN, F., & BROWN, J. Galacto1ipide metabolism. Journal of Biological Chemistry, 1957, 224, 499–507.PubMedGoogle Scholar
  48. SAWANT, P. L., DESAI, I. D., & TAPPEL, A. L. Factors affecting the lysosomal membrane and availability of enzymes. Archives of Biochemistry and Biophysics, 1964, 105, 247–253.PubMedCrossRefGoogle Scholar
  49. SAWANT, P. L., SHIBKO, S., KUMTA, V. S., & TAPPEL, A. L. Isolation of rat-liver lysosomes and their general properties. Biochemica et Biophysica Acta, 1964, 85, 82–92.Google Scholar
  50. SIDMAN, R. L., DICKIE, M. M., & APPEL, S. H. Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. Science, 1964, 17, 309–311.CrossRefGoogle Scholar
  51. SMITH, M. E. The metabolism of myelin lipids. Advances in Lipid Research, 1967, 5, 241–278.PubMedGoogle Scholar
  52. SPENCE, M. W., & WOLFE, L. S. Gangliosides in developing rat brain. Isolation and composition of subcellular membranes enriched in gangliosides. Canadian Journal of Biochemistry, 1967, 45, 671–688.PubMedCrossRefGoogle Scholar
  53. VAN HOOF, F., & HERS, H. G. The abnormalities of lysosomal enzymes in mucopolysacclaridoses. European Journal of Biochemistry, 1968, 7, 34–44.PubMedCrossRefGoogle Scholar
  54. YOUNG, O. M., & KANFER, J. N. An improved separation of sphingolipids by thin-layer chromatography. Journal of Chromatography, 1965, 19, 611–613.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Julian N. Kanfer
    • 1
  1. 1.Joseph P. Kennedy, Jr. Memorial LaboratoriesMassachusetts General HospitalBostonUSA

Personalised recommendations