Advertisement

Lithium-Liquid Oxidant Batteries

  • Paul M. Skarstad

Abstract

A battery used to power an implanted medical device must be safe and reliable. The deliverable capacity and energy at the intended application rate must be known or predicted with a suitable degree of confidence. As an added precaution, because of the possibility of unpredicted time-dependent losses and because the load may vary, depending on the needs of the individual patient, there should be a positive warning of approaching depletion in order to allow timely replacement. Finally, the capacity and energy delivered under application conditions should be the highest possible, consistent with the requirements of safety, reliability, predictability, and depletion warning.

Keywords

Carbon Element Coulombic Efficiency Solid Electrolyte Interphase Discharge Product Calorimeter Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Brennen and B. B. Owens, in: Lithium Battery Technology (H. V. Venkatasetty, ed.), pp. 139–158, Wiley-Interscience, New York (1984).Google Scholar
  2. 2.
    A. Schneider, J. Moser, T. Webb, and J. Desmond, in Proc. 24th Power Sources Symposium, pp. 27–29, PSC Publications Committee, Red Bank, New Jersey (1970).Google Scholar
  3. 3.
    K. Fester, W. D. Helgeson, B. B. Owens, and P. M. Skarstad, Solid State Ionics 9&10, 107–110(1983).Google Scholar
  4. 4.
    G. E. Blomgren and M. L. Kronenberg, German Patent 2,262,256 (1972).Google Scholar
  5. 5.
    M. J. Harney and S. Brown, in: Proceedings of Symposium on Power Sources for Biomedical Implantable Applications, and Ambient Temperature Lithium Batteries (B. Owens and N. Margalit, eds.), pp. 102–109, The Electrochemical Society, Princeton, New Jersey (1980).Google Scholar
  6. 6.
    J. P. Slack, P. Hurzeler, and D. Morse, Pace 5, 567–570 (1982).CrossRefGoogle Scholar
  7. 7.
    C. R. Schlaikjer, in: Lithium Batteries (J. P. Gabano, ed.), pp. 301–370, Academic Press, New York (1983).Google Scholar
  8. 8.
    J. J. Auborn and H. V. Venkatasetty, in: Lithium Battery Technology (H. V. Venkatasetty, ed.), pp. 127–137, Wiley-Interscience, New York (1984).Google Scholar
  9. 9.
    E. Peled, in: Lithium Batteries (J. P. Gabano, ed.), pp. 43–72, Academic Press, New York (1983).Google Scholar
  10. 10.
    T. G. Hayes, B. B. Owens, J. B. Phipps, P. M. Skarstad, and D. F. Untereker, Extended Abstracts, Vol. 82–1, Abstract 764, The Electrochemical Society, Pennington, New Jersey, (1983).Google Scholar
  11. 11.
    A. N. Dey, Thin Solid Films 43 131 (1977).CrossRefGoogle Scholar
  12. 12.
    E. Peled, J. Electrochem. Soc. 126, 2047–2051 (1979).CrossRefGoogle Scholar
  13. 13.
    J. P. Gabano, French Patent 2,079,744 (1971).Google Scholar
  14. 14.
    J. J. Auborn, K. W. French, S. I. Lieberman, V. K. Shah, and A. Heller, J. Electrochem. Soc. 120 1613–1618 (1973).CrossRefGoogle Scholar
  15. 15.
    W. K. Behl, J. A. Christopulos, M. Ramirez, and S. Gilman, J. Electrochem. Soc. 120 1619–1623 (1973).CrossRefGoogle Scholar
  16. 16.
    G. E. Blomgren, V. Z. Leger, M. L. Kronenberg, T. Kalnoki-Kis, and R. J. Brodd, in: Power Sources 7, Proc. llth International Power Sources Symposium (J. Thompson, ed.), pp. 583–593, Academic Press, New York (1978).Google Scholar
  17. 17.
    A. N. Dey, J. Electrochem. Soc. 123, 1262–1264 (1976).CrossRefGoogle Scholar
  18. 18.
    C. R. Schlaikjer, F. Goebel, and N. Marincic, J. Electrochem. Soc. 126, 513–522 (1979).CrossRefGoogle Scholar
  19. 19.
    J. R. Driscoll, G. L. Holleck, and D. E. Toland, Proc. 27th Power Sources Symposium, pp. 28–30, PSC Publications Committee, Red Bank, New Jersey (1976).Google Scholar
  20. 20.
    J. C. Baily and J. P. Kohut, in: Power Sources 8, Proc. 12th International Power Sources Symposium (J. Thompson, ed.), pp. 17–26, Academic Press, New York (1981).Google Scholar
  21. 21.
    W. L. Bowden and A. N. Dey, J. Electrochem. Soc. 127, 1419–1426 (1980).CrossRefGoogle Scholar
  22. 22.
    H. V. Venkatasetty, J. Electrochem. Soc. 127, 2531–2533 (1980).CrossRefGoogle Scholar
  23. 23.
    B. J. Carter, R. M. Williams, F. D. Tsay, A. Rodriquez, S. Kim, M. M. Evans, and H. Frank, J. Electrochem. Soc. 132, 525–528, (1985).CrossRefGoogle Scholar
  24. 24.
    H. V. Venkatasetty and D. J. Saathoff, J. Electrochem. Soc. 128, 113–111 (1981).CrossRefGoogle Scholar
  25. 25.
    P. M. Skarstad and T. G. Hayes, U.S. Patent 4,246,327 (1980).Google Scholar
  26. 26.
    V. Feiman and E. Luksha, U.S. Patents 4,247,609, 4,258,420 and 4,263,378 (1981).Google Scholar
  27. 27.
    C. C. Liang, P. W. Krehl, and D. A. Danner, J. Appl. Electrochem. 11, 563–571, (1981).CrossRefGoogle Scholar
  28. 28.
    T. G. Hayes, D. R. Merritt, and P. M. Skarstad, unpublished results.Google Scholar
  29. 29.
    A. N. Dey, J. Electrochem. Soc. 126, 2052–2056 (1979).CrossRefGoogle Scholar
  30. 30.
    K. A. Klinedinst, Extended Abstracts, Vol. 84–2, Abstract 136, The Electrochemistry Society, Pennington, New Jersey (1984).Google Scholar
  31. 31.
    N. Doddapaneni, Extended Abstracts, Vol. 81–2, Abstract 83, The Electrochemistry Society, Pennington, New Jersey (1981).Google Scholar
  32. 32.
    K. A. Klinedinst, J. Electrochem. Soc. 128, 2507–2512 (1981).CrossRefGoogle Scholar
  33. 33.
    R. C. Weast, ed., Handbook of Chemistry and Physics, 59th Ed., CRC Press, W. Palm Beach, Florida (1978).Google Scholar
  34. 34.
    R. Selim and P. Bro, J. Electrochem. Soc. 118, 829–831 (1971).CrossRefGoogle Scholar
  35. 35.
    K. A. Klinedinst, Proc. 29th Power Sources Conference, pp. 118–121, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar
  36. 36.
    K. C. Tsaur and R. Pollard, J. Electrochem. Soc. 131, 975–984, 984–990 (1984).CrossRefGoogle Scholar
  37. 37.
    N. Marincic, J. Appl. Electrochem. 5, 313–318 (1975).CrossRefGoogle Scholar
  38. 38.
    K. A. Klinedinst, J. Electrochem. Soc. 131, 492–499, (1983).CrossRefGoogle Scholar
  39. 39.
    B. K. Patel, P. M. Skarstad, and D. F. Untereker, in: Proc. Symp. on Lithium Batteries, Vol. II (A. N. Dey, ed.), pp. 221–230, The Electrochemical Society, Pennington, New Jersey (1984).Google Scholar
  40. 40.
    W. G. Howard, R. C. Buchman, B. B. Owens, and P. M. Skarstad, to be published in Proc. 14th Int. Power Sources Symposium, Brighton, England, 1985.Google Scholar
  41. 41.
    K. R. Brennen, K. E. Fester, B. B. Owens, and D. F. Untereker, J. Power Sources 5, 25–34 (1980).CrossRefGoogle Scholar
  42. 42.
    P. Bro, in: Power Sources 7, Proc. 11th International Power Sources Symp (J. Thompson, ed.), pp. 571–582, Academic Press, New York (1979).Google Scholar
  43. 43.
    H. F. Gibbard, in: Proc. Symp. Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), pp. 54–63, The Electrochemical Society, Princeton, New Jersey (1981).Google Scholar
  44. 44.
    H. F. Gibbard, J. Electrochem. Soc. 125, 353–358 (1978).CrossRefGoogle Scholar
  45. 45.
    D. F. Untereker, J. Electrochem. Soc. 125, 1907–1912 (1978).CrossRefGoogle Scholar
  46. 46.
    G. N. Lewis and M. Randall, Thermodynamics, revised by K. S. Pitzer and L. Brewer, 2nd Ed., p. 164, McGraw-Hill, New York (1961).Google Scholar
  47. 47.
    N. Godshall and J. Driscoll, J.Electrochem. Soc. 131, 2221–2226 (1984).CrossRefGoogle Scholar
  48. 48.
    C. R. Schlaikjer, F. Goebel, and N. Marincic, J. Electrochem. Soc. 126, 513–522 (1979).CrossRefGoogle Scholar
  49. 49.
    M. H. Miles, J. Electrochem. Soc. 126, 2168 (1979).CrossRefGoogle Scholar
  50. 50.
    B. K. Patel and P. M. Skarstad, unpublished results.Google Scholar
  51. 51.
    R. C. Buchman, K. Fester, B. K. Patel, P. M. Skarstad, and D. F. Untereker, in: Proc. Symp. Lithium Batteries, Vol. II (A. N. Dey, ed.), pp. 212–220, The Electrochemical Society, Pennington, New Jersey (1984).Google Scholar
  52. 52.
    R. C. Buchman and K. Fester, Personal communication.Google Scholar
  53. 53.
    L. D. Hansen and H. Frank, in the 1983 Goddard Space Flight Center Battery Workshop (D. Baer and B. Morrow, eds.), pp. 109–116, NASA Conference Publication 2031 (1984).Google Scholar
  54. 54.
    N. Marincic, U.S. Patent 4,293,622 (1981).Google Scholar
  55. 55.
    F. Goebel and R. C. McDonald, U.S. Patent 4,416,957 (1983).Google Scholar
  56. 56.
    P. Kiester, J. M. Greenwood, C. F. Holmes, and R. T. Mead, Abstracts of 2nd International Meeting on Lithium Batteries, Paris, April, 1984, Abstract 32, pp. 70–71.Google Scholar
  57. 57.
    R. P. Elliot, The Constitution of Binary Alloys, 1st Supplement, p. 242, McGraw-Hill, New York (1965).Google Scholar
  58. 58.
    A DeHaan and H. Tataria, U.S. Patent 4,388,380 (1983).Google Scholar
  59. 59.
    R. V. Moshtev, Y. Geronov, and B. Pureshevea, J. Electrochem. Soc. 128, 1851–1857 (1981).CrossRefGoogle Scholar
  60. 60.
    E. Peled and H. Yamin, Israel J. Chem. 18, 131 (1979).Google Scholar
  61. 61.
    C. R. Schlaikjer, U.S. Patent 4,020,240 (1979).Google Scholar
  62. 62.
    J. P. Gabano and P. Lenfant Proc. Symp. Battery Design and Optimization (S. Gross, ed.), Vol. 79–1, pp. 348–355. The Electrochemical Society, Princeton, New Jersey (1979).Google Scholar
  63. 63.
    J. P. Gabano and J. Y. Grassien, U.S. Patent 4,228,229 (1980).Google Scholar
  64. 64.
    D. Chua, W. C. Merz, and W. S. Bishop, Proc. 27th Power Sources Symposium, pp. 33–37, The Electrochemical Society, Princeton, New Jersey (1977).Google Scholar
  65. 65.
    T. Kalnoki-Kis, U.S. Patent 4,278,741 (1981).Google Scholar
  66. 66.
    V. O. Catanzarite, U.S. Patent 4,170,693 (1979).Google Scholar
  67. 67.
    D. H. Johnson, in: Proc. 1982 Goddard Space Flight Center Battery Workshop, NASA Conference Publication 2263 (G. Halpert, ed.), pp. 75–84 (1983).Google Scholar
  68. 68.
    M. Babai and U. Zak, Proc. 29th Power Sources Symposium, p. 150, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar
  69. 69.
    R. C. Buchman, personal communication.Google Scholar
  70. 70.
    W. G. Howard, personal communication.Google Scholar
  71. 71.
    K. M. Abraham and R. M. Mank, J. Electrochem. Soc. 127, 2091–2096 (1980).CrossRefGoogle Scholar
  72. 72.
    S. Dallek, S. D. James, and W. P. Kilroy, J. Electrochem. Soc. 128, 508–516 (1981).CrossRefGoogle Scholar
  73. 73.
    W. Shipman and J. F. McCartney, U.S. Patent 4,307,160 (1981).Google Scholar
  74. 74.
    V. F. Garoutte and D. L. Chua, in: Proc. 29th Power Sources Conference, pp. 153–157, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar
  75. 75.
    N. Marincic and F. Goebel, J. Power Sources 5, 73–82 (1980).CrossRefGoogle Scholar
  76. 76.
    D. J. Salmon, M. E. Adcamczyk, M. E. Henricks, L. L. Abels, and J. E. Halls, in Proc. Symp. Lithium Batteries, (H. V. Venkatasetty, ed.), pp. 64–77, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar
  77. 77.
    A. Meitav and E. Peled, J. Electrochem. Soc. 129, 451–457, (1982).CrossRefGoogle Scholar
  78. 78.
    A. N. Dey, J. Power Sources 5, 57–72 (1980).CrossRefGoogle Scholar
  79. 79.
    A. N. Dey, Report DELET-TR-74–0109-F, Fort Monmouth, New Jersey (1978).Google Scholar
  80. 80.
    A. N. Dey, Proc. 28th Power Sources Symposium, pp. 251–255, The Electrochemical Society, Pennington, New Jersey (1978).Google Scholar
  81. 81.
    L. R. Giattino and V. O. Catanzarite, U.S. Patent 4,167.608 (1979).Google Scholar
  82. 82.
    W. V. Zajac Jr., Extended Abstracts 81–2, Abstract 13, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paul M. Skarstad
    • 1
  1. 1.Medtronic, Inc.MinneapolisUSA

Personalised recommendations