Advertisement

Lithium Solid Cathode Batteries for Biomedical Implantable Applications

  • Jean Paul Gabano
  • Michael Broussely
  • Michael Grimm

Abstract

The particular types of systems considered in this chapter are batteries using lithium as the negative electrode, a compatible liquid organic electrolyte or solid inorganic electrolyte, and a transition metal salt or oxide as the positive electrode. The main reasons for reviewing such systems derive from the fact that some have been used as implantable power sources for cardiac pacemakers since the mid-1970s.

Keywords

Propylene Carbonate Propylene Carbonate Solid Electrolyte Interphase Electrochemical Society Organic Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Dey, Thin Solid Film 43, 131 (1977).CrossRefGoogle Scholar
  2. 2.
    E. Peled, Lithium Batteries (J. P. Gabano, ed.), pp. 43–73 Academic Press, London (1983).Google Scholar
  3. 3.
    G. Eichinger and J. P. Besenhard, J. Electroanal. Chem. 72, 1 (1976).CrossRefGoogle Scholar
  4. 4.
    A. N. Dey and M. B. L. Rao, Extended Abstract No. 53, Electrochemical Society Fall Meeting, Boston (1973).Google Scholar
  5. 5.
    A. N. Dey, U.S. Patents 3,658,592 (1972)Google Scholar
  6. 5.
    A. N. Dey, U.S. Patents 3,947,289 (1976).Google Scholar
  7. 6.
    G. Lehmann, T. Rassinoux, G. Gerbier, and J. P. Gabano, in: Power Sources, Vol. 4 (D. H. Collins, ed.) pp. 493, Oriel Press, Newcastle Upon-Tyne (1973).Google Scholar
  8. 7.
    G. Lehmann and J. P. Gabano, U.S. Patent 3,853,627 (1974).Google Scholar
  9. 8.
    J. P. Rivault, M. Broussely, Lithium Batteries (J. P. Gabano, ed.), pp. 245–261, Academic Press, London (1983)Google Scholar
  10. 8a.
    and R. Messina, J. Perichon and M. Broussely, J. Electro Anal. Chem. 133 115–123 (1982).CrossRefGoogle Scholar
  11. 9.
    R. Messina, A. Tranchant, J. Perichon, A. Lecerf, and M. Broussely, J. Power Sources 8, 277–288 (1982)CrossRefGoogle Scholar
  12. 9a.
    and M. Broussely, J. P. Rivault, and J. P. Gabano, International Meeting on Lithium Batteries, Rome, 1982, J. Power sources 9, 339–344 (1983).CrossRefGoogle Scholar
  13. 10.
    D. Herbert and J. Ulam, U.S. Patent 3,043,896 (1962).Google Scholar
  14. 11.
    J. P. Gabano, U.S. Patent, 3,542,601 (1970).Google Scholar
  15. 12.
    J. P. Gabano and G. Gerbier, U.S. Patent 3,511,716 (1970).Google Scholar
  16. 13.
    J. P. Gabano, G. Gerbier, and J. F. Laurent, Proceedings of the 23rd Power Sources Symposium, 80, PSC, Publications Committee, Red Bank, New Jersey (1969).Google Scholar
  17. 14.
    K. G. Wuttke, U.S. Patent 3,884,723 (1975).Google Scholar
  18. 15.
    B. H. Garth, U.S. Patent 3,788,310 (1973).Google Scholar
  19. 16.
    B. H. Garth, U.S. Patent 4,071,665 (1978).Google Scholar
  20. 17.
    A. M. Bredland, T. G. Messing, and J. W. Paulsen, Proceedings of the 29th Power Sources Symposium, 82, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  21. 18.
    M. R. Kegelman, U.S. Patent 3,847,647 (1974).Google Scholar
  22. 19.
    J. P. Gabano, V. Dechenaux, G. Gerbier, and J. Jammet, J. Electrochem. Soc. 119, 459 (1972).CrossRefGoogle Scholar
  23. 20..
    “DuPont Electrochemical Systems” data sheet issued by E. I. DuPont de Nemours and Co., Wilmington, Delaware.Google Scholar
  24. 21.
    B. C. Bergum, A. M. Bredland, and T. J. Messing, Progress in Batteries and Solar Cells, 3, 90 (1980).Google Scholar
  25. 22.
    A. J. Cuesta and D. O. Bump, Proceedings of the Symposium on Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, 95, (B. B. Owens and N. Margalit, ed.),The Electrochemical Society, Princeton, New Jersey (1980).Google Scholar
  26. 23.
    Cordis Corporation, The Cordis Gamma Lithium Battery, Miami, Florida (1980).Google Scholar
  27. 24.
    R. J. Horning and F. W. Rhoback, Progress in Batteries and Solar Cells, 4, 97 (1982).Google Scholar
  28. 25.
    A. N. Dey, in Extended Abstract, No. 54, Electrochemical Society Fall Meeting, Boston (1973).Google Scholar
  29. 26.
    J. L. Rüssel, U.S. Patent 3,985,577 (1976).Google Scholar
  30. 27.
    S. G. Abens, U.S. Patent 3,918,988 (1975).Google Scholar
  31. 28.
    W. B. Ebner and C. R. Walk, Proceedings of the 27th Power Sources Symposium, Publications Committee, Red Bank, New Jersey (1976).Google Scholar
  32. 29.
    C. R. Walk, Lithium Batteries (J. P. Gabano, ed.) pp. 265–279, Academic Press, London (1983).Google Scholar
  33. 30.
    M. S. Whittingham, J. Electrochem. Soc. 123, 315 (1976).CrossRefGoogle Scholar
  34. 31.
    R. J. Horning and S. Viswanathan, Proceedings of 29th Power Sources Symposium, 64, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  35. 32.
    H. F. Hunger and G. H. Heymach, J. Electrochem. Soc. 120, 1161 (1973).CrossRefGoogle Scholar
  36. 33.
    F. W. Dampier, J. Electrochem. Soc. 121, 656 (1974).CrossRefGoogle Scholar
  37. 34.
    A. N. Dey, Extended Abstract No. 54, Electrochemical Society Fall Meeting, Boston (1973).Google Scholar
  38. 35.
    H. Ikeda, T. Saito, and H. Tamura, Manganese Dioxide Symposium, Vol. I, pp. 384, IC Sample Office, Cleveland (1975).Google Scholar
  39. 36.
    G. Gerbier and G. Lehmann, Proceedings of the Symposium on Power Sources for Biomedical Implantable Application and Ambient Temperature Lithium Batteries, 95 (B. B. Owens and N. Margalit, ed.), The Electrochemical Society, Princeton, New Jersey (1980).Google Scholar
  40. 37.
    G. Gerbier, BF 24.66.872 (1979).Google Scholar
  41. 38.
    C. R. Schlaikjer and C. C. Liang, J. Electrochem. Soc. 118, 1147 (1971).CrossRefGoogle Scholar
  42. 39.
    C. C. Liang, J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
  43. 40.
    C. C. Liang, U.S. Patent 3,713,897 (1973).Google Scholar
  44. 41.
    B. B. Owens and H. J. Hansen, U.S. Patent 4,007,122 (1977).Google Scholar
  45. 42.
    T. Jow and J. B. Wagner Jr., J. Electrochem. Soc. 126, 1963 (1979).CrossRefGoogle Scholar
  46. 43.
    C. C. Liang, A. V. Joshi, and N. E. Hamilton, J. Applied Electrochem. 8, 445 (1978).CrossRefGoogle Scholar
  47. 44.
    C. C. Liang, A. V. Joshi, and L. H. Barnette, Proceedings of the 27th Power Sources Symposium, 141, PSC Publications Committee, Red Bank, New Jersey (1976).Google Scholar
  48. 45.
    C. C. Liang, and L. H. Barnette, J. Electrochem. Soc. 123, 453 (1976).CrossRefGoogle Scholar
  49. 46.
    J. R. Rea, L. H. Barnette, C. C. Liang, and A. V. Joshi, Proceedings of the Symposium on Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries, 245, (B. B. Owens and N. Margalit, ed.) The Electrochemical Society, Princeton, New Jersey (1980).Google Scholar
  50. 47..
    Ovalith 13 Pacemaker Coratomic 1979, product literature.Google Scholar
  51. 48.
    D. S. Schechter, J. Med. 72 1166 (1972).Google Scholar
  52. 49..
    Solid State Battery Systems, Mallory (1975).Google Scholar
  53. 50.
    M. Broussely, A. Lecerf, and J. P. Gabano, 13th Power Sources International Symposium, Brighton, England, September (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Jean Paul Gabano
    • 1
  • Michael Broussely
    • 1
  • Michael Grimm
    • 1
  1. 1.Departement Générateurs de Technologies AvancéesSAFTPoitiersFrance

Personalised recommendations