Advertisement

Lithium/Halogen Batteries

  • Curtis F. Holmes

Abstract

The Gibbs free energies of formation for lithium halides vary from -64.5 kcal/mol for lithium iodide to -140.7 kcal/mol for lithium fluoride. Therefore, electrochemical power sources based on the reaction between lithium and halogens offer potentially very attractive energies. In fact, lithium/halogen systems, specifically the lithium/iodine couple, have seen extensive application as the most widely used power sources for cardiac pacemakers from 1976 through the present time (1984). The basic idea behind lithium/halogen systems is rather straightforward. The anode is elemental lithium. The cathode/depolarizer is a pure or mixed halogen whose electronic conductivity has been enhanced with inert additives or reactive species. The electrolyte/separator is the reaction product formed in situ between anode and cathode as the cell is discharged. During discharge this electrolyte layer grows as the reaction products are formed and the anode and cathode materials are depleted.

Keywords

Cathode Material Cardiac Pacemaker Electrochemical Society Lithium Anode Lithium Iodide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Gutmann, A. M. Hermann, and A. Rembaum, Solid-State Electrochemical Cells Based on Charge Transfer Complexes, J. Electrochem. Soc. 114, 323–329 (1967).CrossRefGoogle Scholar
  2. 2.
    J. R. Moser, Solid State Lithium-Iodine Primary Battery, U.S. Patent 3,660,163 (1972).Google Scholar
  3. 3.
    A. A. Schneider and J. R. Moser, Primary Cells and Iodine Containing Cathodes Therefor, U.S. Patent 3,674,562 (1972).Google Scholar
  4. 4.
    R. T. Mead, Solid State Battery, U.S. Patent 3,773,557 (1973).Google Scholar
  5. 5.
    W. Greatbatch, J. H. Lee, W. Mathias, M. Eldridge, J. R. Moser, and A. A. Schneider, The Solid-State Lithium Battery: A New Improved Chemical Power Source for Implantable Cardiac Pacemakers, IEEE Transactions on Bio-Medical Engineering, BME-18, 317–324 (1971).CrossRefGoogle Scholar
  6. 6.
    G. Antonioli, F. Baggioni, F. Consiglio, G. Grassi, R. LeBrun, and F. Zanardi, Stimulatore cardiaco impiantabile con nuova battaria a stato solido al litio, Minerva Med. 64, 2298 (1973).Google Scholar
  7. 7.
    W. Greatbatch, R. Mead, R. McLean, F. Rudolph, and N. W. Frenz, Lithium Bromine Cell, U.S. Patent 3,994,747 (1976).Google Scholar
  8. 8.
    R. McLean and W. Greatbatch, Lithium Chlorine Cell, U.K. Patent 1,566,243 (1978).Google Scholar
  9. 9.
    W. Greatbatch, Alkali Metal-Halogen Cell Having Mixed Halogen Cathode, U.S. Patent 4,132,836 (1979).Google Scholar
  10. 10.
    D. R. Stull and H. Prophet, Project Directors, JANAE Thermochemical Tables, National Standard Reference Data System, NBS-37, U.S. Government Printing Office, Washington, D.C. (1971).Google Scholar
  11. 11..
    C. C. Liang, in: Applications of Solid Electrolytes (T. Takahashi and A. Kozawa, eds.), pp. 60–66, JEC Press, Cleveland.Google Scholar
  12. 12.
    K. Shahi, J. B. Wagner, and B. B. Owens, in: Lithium Batteries (J. P. Gabano, ed.), pp. 418, Academic Press, New York (1983).Google Scholar
  13. 13.
    M. Mueller, R. McLean, C. Holmes, and W. Greatbatch, Lithium-Halogen Cell Including Activated Charcoal, U.S. Patent 4,166,887 (1979).Google Scholar
  14. 14.
    W. G. Howard, P. M. Skarstad, T. G. Hayes, and B. B. Owens, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV80–4, pp. 122–135, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  15. 15.
    A. M. Hermann and E. Luksha, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV80–4, pp. 110–121, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  16. 16.
    W. Greatbatch, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV80–4, pp. 63, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  17. 17.
    W. Greatbatch, R. Mead, R. McLean, F. Rudolph, and N. W. Frenz, Lithium-Bromine Cell and Method of Making the Same, U.S. Patent 4,105,833 (1978).Google Scholar
  18. 18.
    W. Greatbatch, R. Mead, F. Rudolph, R. McLean, and N. W. Frenz, Method of Making a Lithium-Bromine Cell, U.S. Patent 4,164,070 (1978).Google Scholar
  19. 19.
    C. F. Holmes and M. Mueller, Lithium-Bromine Cell, U.S. Patent 4,147,842 (1978).Google Scholar
  20. 20.
    A. A. Schneider, G. C. Bowser, and L. H. Foxwell, Lithium Iodine Primary Cells Having Novel Pelletized Depolarizer, U.S. Patent 4,148,975 (1979).Google Scholar
  21. 21.
    W. Greatbatch, C. F. Holmes, and M. Mueller, in: Extended Abstracts of the Fall 1977 Electrochemical Society Meeting, Abstract 21, pp. 58–60, The Electrochemical Society, Princeton, New Jersey (1977).Google Scholar
  22. 22.
    K. R. Brennen and D. F. Untereker, in: Extended Absracts of the Fall 1978 Electrochemical Society Meeting, Abstract 60, pp. 165–166, The Electrochemical Society, Pennington, New Jersey (1978).Google Scholar
  23. 23.
    K. R. Brennen and D. F. Untereker, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV 80–4, pp. 161–173, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  24. 24.
    R. L. McLean and J. Bleecher, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV 80–4, pp. 207–220, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  25. 25.
    G. M. Phillips and D. F. Untereker, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV 80–4, pp. 195–206, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  26. 26.
    F. E. Kraus and A. A. Schneider, in: Proc. 27th Power Sources Symposium, pp. 144–147, PSC Publications Committee, Red Bank, New Jersey (1976).Google Scholar
  27. 27.
    G. M. Phillips and D. F. Untereker, in: Proceedings of the Symposium on Lithium Batteries (H. V. Venkatasetty, ed.), PV 81–4, pp. 303–322, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar
  28. 28.
    A. A. Schneider, S. E. Snyder, T. De Van, M. J. Harney, and D. E. Harney, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV80–4, pp. 144–153, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  29. 29.
    K. J. Jones, Lithium Iodine Batteries for Cardiac Pacemakers, Med. Electron. 72, 86–91 (1981).Google Scholar
  30. 30.
    C. F. Holmes and J. Greenwood, in: Proc. 29th Power Sources Symposium, pp. 62–64, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  31. 31.
    W. Greatbatch, R. Mead, and F. Rudolph, Lithium-Iodine Battery Having Coated Anode, U.S. Patent 3,957,533 (1976).Google Scholar
  32. 32.
    C. F. Holmes and W. R. Brown, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV 80–4, pp. 187–194, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  33. 33.
    B. B. Owens and P. M. Skarstad, in: Fast Ion Transport in Solids (P. Vashishta, J. N. Mundy, and G. K. Shenoy, eds.), pp. 61–67, Elsevier North-Holland, Amsterdam (1979).Google Scholar
  34. 34.
    P. M. Skarstad and B. B. Owens, in: Proc. Workshop on Lithium Nonaqueous Battery Electrochemistry (E. B. Yeager, B. Schumm Jr., G. Blomgren, D. R. Blanken ship, V. Leger, J. Akridge, eds.), PV 80–7, pp. 276–292, The Eletrochemical Society, Pennington, New Jersey (1980).Google Scholar
  35. 35.
    W. R. Brown, W. R. Fairchild, H. A. Homung, and C. F. Holmes, in Extended Abstracts of the Fall 1984 Electrochemical Society Meeting, Abstract 174, pp. 257, The Electrochemical Society, Pennington, New Jersey (1984).Google Scholar
  36. 36.
    J. B. Phipps, T. G. Hayes, P. M. Skarstad, and D. F. Untereker, Extended Abstracts of the Fall 1984 Electrochemical Society Meeting, Abstract 175, pp. 258, The Electrochemical Society, Pennington, New Jersey (1984).Google Scholar
  37. 37..
    A. A. Schneider, private communication (1982).Google Scholar
  38. 38..
    R. T. Mead, private communication (1977).Google Scholar
  39. 39.
    F. E. Kraus, M. V. Tyler, and A. A. Schneider, in: Reliability Technology for Cardiac Pacemakers III. A Workshop Report (Harry A. Schafft, ed.), NBS Special Publication 400–50, pp. 35–37, National Bureau of Standards, Washington, D.C. (1979).Google Scholar
  40. 40.
    W. R. Brown, C. F. Holmes, and R. C. Stinebring, in: Proceedings of the Symposia on Corrosion in Batteries and Fuel Cells and Corrosion in Solar Energy Systems (C. J. Johnson and S. L. Pohlman, eds.), PV 83–1, pp. 27–31, The Electrochemical Society, Pennington, New Jersey (1983).Google Scholar
  41. 41.
    A. A. Schneider, J. R. Moser, T. H. E. Webb, J. E. Desmond, in: Proceedings of the 24th Power Sources Symposium, pp. 27–30, PSC Publications Committee, Red Bank, New Jersey (1970).Google Scholar
  42. 42.
    R. Mead, N. W. Frenz, and F. Rudolph, Lithium-Iodine Battery, U.S. Patent 3,996,066 (1976).Google Scholar
  43. 43.
    W. Greatbatch, R. Mead, F. Rudolph, and N. W. Frenz, Lithium-Iodine Battery, U.S. Patent 3,969,142 (1976).Google Scholar
  44. 44.
    W. Greatbatch, Lithium-Iodine Battery, U.S. Patent 3,874,929 (1975).Google Scholar
  45. 45.
    R. Mead, W. Greatbatch, F. Rudolph, and N. W. Frenz, Lithium-Iodine Cell, U.S. Patent 4,210,708 (1980).Google Scholar
  46. 46.
    R. T. Mead, C. F. Holmes, and W. Greatbatch, in: Proceedings of the Symposium on Cell Design and Optimization (S. Gross, ed.), PV 79–1, pp. 327–334, The Electrochemical Society, Pennington, New Jersey (1979).Google Scholar
  47. 47.
    J. D. Jolson and A. A. Schneider, in: Proc. 30th Power Sources Symposium, pp. 185–187, The Electrochemical Society, Inc., Pennington, New Jersey (1982).Google Scholar
  48. 48.
    A. A. Schneider and H. D. Goldman, Lithium iodine cells for DDD and antitachycardia pacemakers, Stimucoeur Med. 11, 223 (1984).Google Scholar
  49. 49.
    M. C. Day and J. Selbin, Theoretical Inorganic Chemistry, Reinhold, New York, 1962, p. 98.Google Scholar
  50. 50.
    W. S. Holmes, in: Reliability Technology for Cardiac Pacemakers III. A Workshop Report (Harry A. Schafft, ed.), NBS Special Publication 400–50, pp. 6–9, National Bureau of Standards, Washington, D.C. (1979).Google Scholar
  51. 51.
    L. D. Hansen and R. M. Hart, in: Reliability Technology for Cardiac Pacemakers III. A Workshop Report (Harry A. Schafft, ed.), NBS Special Publication 400–50, pp. 10–16, National Bureau of Standards, Washington, D.C. (1979).Google Scholar
  52. 52.
    D. F. Untereker and B. B. Owens, in: Reliability Technology for Cardiac Pacemakers III. A Workshop Report (Harry A. Schafft, ed.), NBS Special Publication 400–50, pp. 17–22, National Bureau of Standards, Washington, D.C. (1979).Google Scholar
  53. 53.
    E. J. Prosen and J. C. Colbert, in: Reliability Technology for Cardiac Pacemakers III. A Workshop Report (Harry A. Schafft, ed.) NBS Special Publication 400–50, pp. 23–26, National Bureau of Standards, Washington, D.C. (1979).Google Scholar
  54. 54.
    C. F. Holmes, W. S. Holmes, R. L. McLean, and W. Greatbatch, in: Proc. 28th Power Sources Symposium, pp. 226–229, PSC Publications Committee, Red Bank, New Jersey (1978).Google Scholar
  55. 55.
    W. Greatbatch, R. McLean, W. Holmes and C. F. Holmes, A microcalorimeter for nondestructive analysis of pacemakers and pacemaker batteries, IEEE Trans. Biomed. Eng. BME-26, 306–309 (1979).CrossRefGoogle Scholar
  56. 56.
    D. F. Untereker, The use of a microcalorimeter for analysis of load-dependent processes occurring in a primary battery, J. Electrochem. Soc. 125, 1907–1912 (1978).CrossRefGoogle Scholar
  57. 57.
    C. C. Liang and C. F. Holmes, Performance and reliability of the lithium iodine battery, J. Power Sources 5, 3–13 (1980).CrossRefGoogle Scholar
  58. 58.
    C. F. Holmes and S. T. Farrell, in: Cardiac Pacing, Electrophysiology and Pacemaker Technology (G. A. Feruglio, ed.), pp. 1193–1196, Piccin Medical Books, Padova (1983).Google Scholar
  59. 59.
    CF. Holmes and R. C. Stinebring, in: Proceedings of the Symposium on Lithium Batteries, (H. V. Venkatasetty, ed.), PV 81–4, pp. 293–302, The Electrochemical Society, Pennington, New Jersey (1981).Google Scholar
  60. 60.
    D. J. Gerrard, B. B. Owens, and K. Fester, in: Reliability Technology for Cardiac Pacemakers III. A Workshop Report, (Harry A. Schafft, ed.), NBS Special Publication 400–50, pp. 30–35, National Bureau of Standards, Washington, D.C. (1979).Google Scholar
  61. 61.
    J. S. Kim and K. R. Brennen, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV 80–4, pp. 174–186, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  62. 62.
    K. R. Brennen, K. E. Fester, B. B. Owens, and D. F. Untereker, A capacity rating system for cardiac pacemaker batteries, J. Power Sources 5, 25–34 (1980).CrossRefGoogle Scholar
  63. 63.
    R. Salem and P. Bro, Performance domain analysis of primary batteries, J. Electrochem. Soc. 118, 829–831 (1971).CrossRefGoogle Scholar
  64. 64.
    C. F. Holmes and D. Taub, Les piles lithium-iode: evaluation, fiabilité, et performances, Stimucoeur Med. 8, 318–322 (1980).Google Scholar
  65. 65..
    C. F. Holmes, Powering the pacemaker, Qual. Prog. January, 21–22 (1979).Google Scholar
  66. 66.
    C. F. Holmes, W. R. Fairchild, and R. C. Stinebring, Real time performance of lithium/iodine pacemaker batteries, Rev. Eur. Technol. Biomed. 4, 386 (1982).Google Scholar
  67. 67.
    WD. Helgeson, in: Extended Abstracts of the Spring 1983 Electrochemical Society Meeting, Abstract No. 28, p. 44, The Electrochemical Society, Pennington, New Jersey (1983).Google Scholar
  68. 68.
    A. A. Schneider, S. E. Snyder, and C. P. Bennett, in: Cardiac Pacing, Electrophysiology and Pacemaker Technology, (G. A. Feruglio, ed.), pp. 1203–1208, Piccin Medical Books, Padova (1983).Google Scholar
  69. 69.
    M. Guilleman and D. Gilet, in: Abstracts of the VIIth World Symposium on Cardiac Pacing, published in Pace 6, 366 (1983).Google Scholar
  70. 70.
    B. B. Owens, Pacemaker longevity projections from battery capacity, Stimucoeur Med. 9, 161–162 (1981).Google Scholar
  71. 71.
    E. Luksha, in: Power Sources for Biomedical Implantable Applications and Ambient Temperature Lithium Batteries (B. B. Owens and N. Margalit, eds.), PV 80–4, pp. 71–80, The Electrochemical Society, Pennington, New Jersey (1980).Google Scholar
  72. 72.
    B. B. Owens, K. R. Brennen, and J. Kim, Lithium pacemaker reliability, Stimucoeur Med. 9, 371–381 (1981).Google Scholar
  73. 73.
    M. Bilitch, R. G. Hauser, B. S. Goldman, S. Furman, and V. Parsonnet, Performance of cardiac pacemaker pulse generators, Pace 6, 670–672 (1983).CrossRefGoogle Scholar
  74. 74.
    T. G. Hayes, B. B. Owens, J. B. Phipps, P. M. Skarstad, and D. F. Untereker, in Extended Abstracts of the Spring 1983 Electrochemical Society Meeting, Abstract 764, pp. 1126, The Electrochemical Society, Pennington, New Jersey (1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Curtis F. Holmes
    • 1
  1. 1.Research and DevelopmentWilson Greatbatch LimitedNew YorkUSA

Personalised recommendations