Advertisement

Evaluation Methods

  • Keith Fester
  • Samuel C. Levy

Abstract

Battery evaluation as applied to power sources for biomedical applications is the appraisal of both battery designs and individual units. The appraisals are necessary to determine a battery’s worth for satisfying the needs of the biomedical device and, ultimately, the patient. The primary needs are (1) an adequate supply of energy to operate the device for the intended service life within the specified power requirements and (2) a highly reliable energy source. The battery evaluation activities have the objective of verifying how well the battery design satisfies these performance and reliability goals. Furthermore, when a particular design is qualified for a device and begins to be manufactured on a production line, it is necessary to evaluate individual units for quality assurance requirements.

Keywords

Cumulative Survival Sandia National Laboratory Cardiac Pacemaker Accelerate Test Accelerate Life Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rosenbaum, D. Kleitman, B. Singer, and A. Barnett, USAEC Statistical Guidelines for Device Testing, Draft 19, October 1973.Google Scholar
  2. 2.
    U.S. MIL-STD-781; Reliability Qualification and Production Acceptance Tests—Exponential Distribution, Issue C, available from National Technical Information Service, Springfield, Virginia.Google Scholar
  3. 3.
    C. C. Liang and C. F. Holmes, Performance and reliability of the lithium/iodine battery, J. Power Sources, 5, 3 (1980).CrossRefGoogle Scholar
  4. 4.
    B. B. Owens and D. F. Untereker, Accelerated testing of long life primary cells, in: Power Sources Vol 7 (J. Thompson, ed.), Academic Press, New York (1979).Google Scholar
  5. 5.
    H. F. Gibbard, Heat generation in lithium thionyl chloride batteries, Proc. Electrochem. Soc. 80–4 (1980).Google Scholar
  6. 6.
    W. S. Holmes, Pacemaker battery microcalorimetry, in: Reliability Technology for Cardiac Pacemakers III, NBS Special Publication 400–50, 1979.Google Scholar
  7. 7.
    L. D. Hansen and R. M. Hart, The characterization of internal power losses in pacemaker batteries by calorimetry, in: Reliability Technology for Cardiac Pacemakers III, NBS Special Publication 400–50, (1979).Google Scholar
  8. 8.
    D. F. Untereker and B. B. Owens, Microcalorimetry: A tool for the assessment of self-discharge processes in batteries, in: Reliability Technology for Cardiac Pacemakers III, NBS Special Publication 400–50, (1979).Google Scholar
  9. 9.
    E. J. Prosen and J. C. Colbert, A microcalorimeter for measuring characteristics of pacemaker batteries, in: Reliability Technology for Cardiac Pacemakers III, NBS Special Publication 400–50, (1979).Google Scholar
  10. 10.
    S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek, and T. J. Sinclair, The impedance of the Leclanché cell. I. The treatment of experimental data and the behavior of a typical undischarged cell, 7. Appl. Electrochem. 10, 357 (1980).CrossRefGoogle Scholar
  11. 11.
    S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek, and T. J. Sinclair, The impedance of the Leclanché cell. II. The impedence of individual cell components, J. Appl. Electrochem. 10, 603 (1980).CrossRefGoogle Scholar
  12. 12.
    S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek, and T. J. Sinclair, The impedance of the Leclanché cell. III. The impedance of the cell at different stages of discharge and state-of-charge indication by the impedance method, J. Appl. Electrochem. 10, 799 (1980).CrossRefGoogle Scholar
  13. 13.
    S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek, and T. J. Sinclair, The impedance of the alkaline zinc-manganese dioxide cell. II. An interpretation of the data, J. Appl. Electrochem. 11, 715 (1981).CrossRefGoogle Scholar
  14. 14.
    M. Keddam, Z. Stoynov, and H. Takenouti, Impedance measurement on Pb/H2S04 batteries, J. Appl. Electrochem. 7, 539 (1977).CrossRefGoogle Scholar
  15. 15.
    R. J. Brodd and H. J. DeWane, Impedance of Lechanché cells and batteries, J. Electrochem. Soc. 110, 1091 (1963).CrossRefGoogle Scholar
  16. 16.
    R. J. Brodd and H.J. DeWane, Impedance of sealed nickel-cadmium dry cells, Electrochem. Tech. 3, 12 (1965).Google Scholar
  17. 17.
    J. E. Clifford and R. E. Thomas, Study of Battery Accelerated Testing Techniques, Final Report, SAND82–7049, Sandia National Laboratories, Albuquerque, New Mexico (1982).Google Scholar
  18. 18.
    R. E. Thomas, E. W. Brooman, J. H. Waite, O. L. Linebrink, and J. McCallum, Study of Space Battery Accelerated Testing Techniques, Phase II Report, Ideal Approaches Towards Accelerated Tests and Analysis of Data, Contract No. NAS 5–11594, Batteile Memorial Institute, Columbus Laboratories, 1969.Google Scholar
  19. 19.
    J. McCallum, R. E. Thomas, and E. A. Roeger, Jr., Failure Mechanisms and Accelerated Life Tests for Batteries, Technical Report AFAPL-TR-68–83, Battelle Memorial Institute, Columbus Laboratories, 1968.Google Scholar
  20. 20.
    D. F. Velleman and D. C. Hoaglin, Application, Basics and Computing of Expoloratory Data Analysis, Oxbury Press, 1981.Google Scholar
  21. 21.
    K. T. Gillen and K. E. Mead, Predicting Life Expectancy and Simulating Age of Complex Equipment Using Accelerated Aging Techniques, SAND79–1561, Sandia National Laboratories, Albuquerque, New Mexico (1979).Google Scholar
  22. 22.
    S. Siegel, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York (1956).Google Scholar
  23. 23.
    M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, Wiley, New York (1973).Google Scholar
  24. 24.
    E. I. Lehmann and H. J. M. D’Abrera, Nonparametrics, Holden-Day, Inc., San Francisco, California (1975).Google Scholar
  25. 25.
    H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey (1946).Google Scholar
  26. 26.
    K. R. Brennan, K. E. Fester, B. B. Owens, and D. F. Untereker, A capacity rating system for cardiac pacemaker batteries, J. Power Sources 5, 25–34 (1980).CrossRefGoogle Scholar
  27. 27.
    U.S. MIL-STD-202; Test Methods for Electronic and Electrical Component Parts, Issue E, Method 213B Shock (Specified Pulse) available from National Technical Information Service, Springfield, Virginia.Google Scholar
  28. 28.
    U.S. MIL-STD-202; Test Methods for Electronic and Electrical Component Parts, Issue E, Method 204C, Vibration, High Frequency, available from National Technical Information Service, Springfield, Virginia.Google Scholar
  29. 29.
    F. E. Kraus, M. V. Tyler, and A. A. Schneider, in: Reliability Technology for Cardiac Pacemakers III (H. A. Schafft, ed.), NBS Special Publication 400–50, pp. 35–48, U.S. Dept. of Commerce, June, 1979.Google Scholar
  30. 30.
    W. R. Brown, An Examination of Wilson Greatbatch Limited Model 755 Cells After Load Testing, Calspan Corporation Report, April, 1978.Google Scholar
  31. 31.
    B.C. Bunker, C. J. Leedeke, S. C. Levy, and C. C. Crafts, in: Power Sources 8 (J. Thompson, ed.), pp. 53–62, Academic Press, New York (1981).Google Scholar
  32. 32.
    N. S. Istephanous, K. Fester, D. R. Merritt, P. M. Skarstad, and D. F. Untereker, Glass Seal Corrosion in Liquid Lithium Electrolyte Batteries, The Electrochemical Society, Extended Abstracts No. 146, Fall (1984).Google Scholar
  33. 33.
    D. F. Untereker, The use of a microcalorimeter for analysis of load-dependent processes occurring in a primary battery, J. Electrochem. Soc. 125, 1907–1912 (1978).CrossRefGoogle Scholar
  34. 34.
    J. S. Kim and K. R. Brennen, Mathematical modeling of lithium iodine discharge data, Proc. Electrochem. Soc. 80–4, 174–186, 1980.Google Scholar
  35. 35.
    W. D. Helgeson, Design Testing and Reliability of Lithium-Iodine Pacemaker Batteries, The Electrochemical Soc., Extended Abstracts No. 28, Spring (1983).Google Scholar
  36. 36.
    J. Berksow and A. Gage, Calculation of survival rates of cancer, Proc. Staff Meeting, Mayo Clinic 25, 270 (1950).Google Scholar
  37. 37.
    A Schaudig and M. Zimmerman, Comparison of function time of different pacemaker systems, Ann. Cardiol. Angiol. 20(4), 357 (1971).Google Scholar
  38. 38.
    G. Green, Progress in pacemaker technology, J. Electrocardiol. 7(4), 375 (1974).CrossRefGoogle Scholar
  39. 39.
    W. Greatbatch, in: Advances in Pacemaker Technology (M. Schaldach and S. Furman, eds.), pp. 345–355, Springer-Verlag, New York (1975).Google Scholar
  40. 40.
    M. Bilitch, Performance of cardiac pacemaker pulse generators, a regular feature section of the PACE (Pacing and Clinical Electrophysiology), Futura, Mt. Kisco, New York.Google Scholar
  41. 41.
    W. Greatbatch, in: Quantitative Cardiovascular Studies: Clinical and Research Applications of Engineering Principles (N. Hwang, D. R. Gross, and D. J. Patel, eds.), pp. 581, University Park Press, Baltimore, Maryland (1979).Google Scholar
  42. 42.
    P. Lenfant, M. Broussely, J. P. Rivault, and M. Grimm, The lithium silver Chromate cell: A five-year study, Proc. Electrochem. Soc. 80–4, 81–94 (1980).Google Scholar
  43. 43.
    K. Fester, W. D. Helgeson, B. B. Owens, and P. M. Skarstad, Long term performance of Li/I2 batteries, Solid State Ionics 9&10, 107–110 (1983).CrossRefGoogle Scholar
  44. 44.
    Reliability Prediction of Electronic Equipment, Military Standardization Handbook, MIL-HDBK-217B, September 1974.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Keith Fester
    • 1
  • Samuel C. Levy
    • 2
  1. 1.Medtronic, Inc.MinneapolisUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations