Advertisement

Nuclear Batteries for Implantable Applications

  • David L. Purdy

Abstract

The nuclear battery is so named because its source of energy is derived from energy stored in the “nucleus” of the atoms of the fuel, rather than in the electrons that surround the nucleus and that are the fundamental source of energy for the chemical batteries described elsewhere in this book. Since the energy stored in the atom’s nucleus is immense compared with the chemical energy stored in the electron shells around the nucleus, the nuclear battery promises to be very powerful, small, and light compared with its chemical counterpart.

Keywords

Thermoelectric Material Atomic Energy Commission Cardiac Pacemaker Thermoelectric Module Bismuth Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reference Study and Test Plan for Phase II, August 15. 1969, Radioisotope-Powered Cardiac Pacemaker Report Number 3731–17, Contract AT(30–1)-3731.Google Scholar
  2. 2.
    S.A. Kolenik, Statistical Reliability Analysis Summary, Radioisotope-Powered Cardiac Pacemaker, Contract At(11–1)-3057, submitted to the Atomic Energy Commission Materials Branch, Directorate of Licensing (November 1972).Google Scholar
  3. 3.
    Determination of the Weldability and Elevated Temperature Stability of Refractory Metal Alloys, NASA-CR-1607.Google Scholar
  4. 4.
    Harold J. Garber, Pressure-Volume-Temperature Relationships for Helium, Technical Memorandum, Radioisotope-Powered Cardiac Pacemaker Project, NUMEC 3731–4.5–3.Google Scholar
  5. 5.
    Raymond J. Roark, Formulas for Stress and Strain, McGraw-Hill, 4th Ed. (1965).Google Scholar
  6. 6.
    Platinum Clad Isotope Fuel Capsule for Space Applications, U.S. Atomic Energy Commission Report NAA-SR-12578.Google Scholar
  7. 7.
    H. J. Garber, Detailed Study of the Radioactive Decay Kinetics of Plutonium-238 and Related Parent and Daughter Nuclides, Radioisotope-Powered Cardiac Pacemaker Project, NUMEC 3731–4.5.7.Google Scholar
  8. 8.
    J. E. Selle, J. J. English, P. E. Teaney, and J. R. McDougal, The Compatability of 238 PuO2 with Various Refractory Metals and Alloys, Interim Report MLM-1706, October 23, 1970.CrossRefGoogle Scholar
  9. 9.
    Quarterly Progress Report for Radioisotope Powered Cardiac Pacemaker Program, August 1, 1973-October 31, 1973, ARCO-3057–15.Google Scholar
  10. 10.
    A Review of Determinations of Radiation Dose to the Active Bone Marrow from Diagnostic X-ray Examinations, DHEW Publication (FDA)-74–8007.Google Scholar
  11. 11.
    Interim Radiation Protection Standards for the Design, Construction, Testing and Control of Radioisotope Cardiac Pacemakers, Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Paris, 21st May, 1974, C(74)101.Google Scholar
  12. 12.
    Final Generic Environmental Statement on the Routine Use of Plutonium-Powered Cardiac Pacemaker, July 1976, U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, NUREG-0060.Google Scholar
  13. 13.
    David L. Purdy, Design of Isotopically Powered Thermoelectric Generators, American Nuclear Society (July 1968).Google Scholar
  14. 14.
    David L. Purdy and Zalman M. Shapiro, Design of Isotopic Generators, 8th Japan Conference on Radioisotopes, November 16, 1967, Paper Number C/E-6.Google Scholar
  15. 15.
    Robert F. Hicks and Roland W. Ure, Science and Engineering of Thermoelectricity, Interscience, New York (1961).Google Scholar
  16. 16.
    Michael Alais, Rene Berger, Rene Boucher, Kenneth A. Gasper, Paul Laurens, A Plutonium-238 Fueled Cardiac Pacemaker Nucl. Technol., Vol. 26 (1975).Google Scholar
  17. 17.
    T. H. Smith, J. Greenborg, W. E. Matheson, Ing. M. Schaldach, A Benefit/Risk Analysis of the Betacel Battery Nuclear-Powered Cardiac Pacemaker, McDonnell Douglas Astronautics Company Paper WD2110, (May 1973).Google Scholar
  18. 18.
    M. L. Smith, T. A. Golding, W. E. Matheson, Model 400 Betacel Battery Qualification Tests, Donald W. Douglas Laboratories Report No. DWDC-727–078 (July 1972).Google Scholar
  19. 19.
    T. H. Smith, J. Greenborg, W. E. Matheson, Benefit/risk analysis of cardiac pacemakers powered by Betacel promethium-147 batteries, Nucl. Technol., 26 (May 1975).Google Scholar
  20. 20.
    Atomcell Brochure, Hittman Corporation (1976).Google Scholar
  21. 21.
    Hittman Corporation Annual Report (1976).Google Scholar
  22. 22.
    M. S. Hixson and Paul Laurens, Design Criteria and Two Year Clinical Results of Pu-238 Fueled Demand Pacemaker, Medtronic, Inc. Report (1972).Google Scholar
  23. 23.
    Francoise Marchand, personal communication, Hopital Broussais, 96, rue Didot, Paris, France, September 2, 1982.Google Scholar
  24. 24.
    Paul Laurens, Nuclear-powered pacemakers: An eight year clinical experience, Pace 2 (1979).Google Scholar
  25. 25.
    Victor Parsonnet, personal communication, Newark Beth Israel Medical Center, Newark, NJ, September 28, 1982.Google Scholar
  26. 26.
    P. Laurens, P. Gavelle, A. Piwnica, C. Farge, Ch. Dubost, and P. Maurcie, Nuclear Pacemaker Clnical experience: Nine Year Follow-up of 300 Patients, Proceedings of the VIth World Symposium on Cardiac Pacing, Montreal (October 1979).Google Scholar
  27. 27.
    J. Hixson, P. Laurens, P. Gavelle, and J. Van Leusen, 10 Years Technical and Clinical Results of Pu-238 Fueled Demand Pacemaker, A AMI Annual Meeting, San Francisco (13–17 April 1980).Google Scholar
  28. 28.
    Paul Laurens, Pierre Thomas, and Gerard Koehly, Les progres dans les piles isotopiques pacer stimulateurs cardiaques, Cardiostem (February 1978).Google Scholar
  29. 29.
    D. L. Purdy, CA. Bodenschatz, and H.J. Garber, Comparison of vented and unvented 238Pu heat sources, Am. Nucl. Soc. Trans. 14(2), (1971).Google Scholar
  30. 30.
    Thomas S. Bustard, A nuclear battery for the cardiac pacemaker, Am. Nucl. Soc. Trans. 14(2), (1971).Google Scholar
  31. 31.
    R. L. Schimmel, Industrial status of 238Pu sources, Am. Nucl. Soc. Trans. 14(2), (1971).Google Scholar
  32. 32.
    C. A. Bodenschatz, M. G. Blair, G. W. Maurer, and J. F. Hursen, Safety aspects of fuel capsules for medical purposes, Am. Nucl. Soc. Trans. 14(2), (1971).Google Scholar
  33. 33.
    G. B. Pleat and W. J. Lindsey, Future production of 238Pu, Am. Nucl. Soc. Trans. 14(2), (1971).Google Scholar
  34. 34.
    Nicholas P. D. Smyth, George J. Magovern, William J. Cushing, John M. Keshishian, Leo C. Kelly, and Martin Dixson, Preliminary clinical experience with a new radioisotope powered cardiac pacemaker, J. Thorac. Cardiovasc. Surg. 71(2), (1976).Google Scholar
  35. 35.
    Nicholas P. D. Smyth, George J. Magovern, William J. Cushing, John M. Keshishian, Preliminary Experience With a New Radioisotopic Powered Cardiac Pacemaker, Proceedings of the Vth International Symposium on Cardiac Pacing, Tokyo (March 1976).Google Scholar
  36. 36.
    David L. Purdy, The development of an isotopic cardiac pacer, Engineering: Cornell Quart. 9(4), (1975).Google Scholar
  37. 37.
    David L. Purdy, George J. Magovern, and Nicholas P. D. Smith, A new radioisotope powered cardiac pacer, J. Thorac. Cardiovasc. Surg. 69(1), (1975).Google Scholar
  38. 38.
    Nicholas P. D. Smyth, David L. Purdy, Diane Sage, and John M. Keshishian, A new multi-programmable isotopic powered cardiac pacemaker, Pace 5 (1982).Google Scholar
  39. 39.
    H. C. Carney, Comparison of Strontium-90 and Plutonium-238 Milliwatt Thermoelectric Generators, Power from Radioisotopes, Proceedings of OECD Nuclear Energy Agency and the Junta de Energia Nuclear of Spain, Madrid (June 1972).Google Scholar
  40. 40.
    M. Alais, B. Etieve, A Stahl, P. Thomas, The GIPSIE Radioisotopic Generator for Use in Cardiac Pacemakers, Power from Radioisotopes, Proceedings of OECD Nuclear Energy Agency and the Junta de Energia Nuclear of Spain, Madrid (June 1972).Google Scholar
  41. 41.
    R. Bomal, A. Manin, K. Steinschaden, Prospects for Radiovoltaic Energy Conversion, Power from Radioisotopes, Proceedings of OECD Nuclear Energy Agency and the Junta de Energia Nuclear of Spain, Madrid (June 1972).Google Scholar
  42. 42.
    D. Schalch and A. Scharmann, Practical Limits of Radiophotovoltaic Energy Conversion, Power from Radioisotopes, Proceedings of OECD Nuclear Energy Agency and the Junta de Energia Nuclear of Spain, Madrid (June 1972).Google Scholar
  43. 43.
    Frank G. Gatt, A Tritium Nuclear Cardiac Pacemaker, Power from Radioisotopes, Proceedings of OECD Nuclear Energy Agency and the Junta de Energia Nuclear of Spain, Madrid (June 1972).Google Scholar
  44. 44.
    F. N. Huffman, F. A. Molophia, J. C. Norman, Thermal and Radiation Effects of 238Pu Fuel Capsules on Dogs and Primates, Trans. Am. Nucl. Soc. 1971 Winter Meeting, 14(2), (1971).Google Scholar
  45. 45.
    W. J. Schull, M. Otake, and J. V. Neel, Genetic effects of the atomic bombs: A reappraisal, Science 213, 1220 (1981).Google Scholar
  46. 46.
    Medtronic, Inc., Technical Report on the Medtronic™ Model 9000 Isotopic Pulse Generator, submitted to the United States Atomic Energy Commission, June 1, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David L. Purdy
    • 1
  1. 1.Coratomic, Inc.IndianaUSA

Personalised recommendations