Rechargeable Electrochemical Cells as Implantable Power Sources

  • Gerhard L. Holleck


The concept of using a rechargeable cell for applications requiring delivery of a high energy per weight or volume over an extended time is both attractive and technically sound. Even a fairly low-energy-density Ni/Cd cell needs to be recharged only about 10 times to deliver the same energy as a modern high-energy-density lithium cell. One may ask, then, why there are no secondary cells used in any of today’s pacemakers. The reason can be found in the miniaturization of electronic circuits and the reduction in required power levels coupled with the development of high-energy-density, long-lived reliable electrochemical primary cells that are able to satisfy the majority of present needs.


Nickel Hydroxide Silver Powder Cobalt Hydroxide Zinc Electrode Lithium Anode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Elmquist and A. Senning, An implantable cardiac pacemaker, Medical Electronics (N. Smythe, ed.), pp. 253, Iliff & Son, London (1960).Google Scholar
  2. 2.
    H. Lagergren, Pace 1, 140–143 (1978).CrossRefGoogle Scholar
  3. 3.
    H. Siddons and O’N. Humphries, Proc. Roy. Soc. Med. 54, 237 (1961).Google Scholar
  4. 4.
    S. Furman, W. Raddi, P. Escher, J. Schnebel, and S. Horwitt, Arch. Surg. 91, 796 (1965).CrossRefGoogle Scholar
  5. 5.
    A Silver, G. Root, F. X. Byron, and H. Sandberg, Ann. Thorac. Surg. 1, 380 (1965).CrossRefGoogle Scholar
  6. 6.
    P. W. Barnhart, R. E. Fischell, K. B. Lewis, and W. E. Radford, A fixed-rate rechargeable cardiac pacemaker, Johns Hopkins University, Appl. Phys. Lab. Techn. Dig. 9, 2 (1970).Google Scholar
  7. 7.
    K. B. Lewis, R. E. Fischell, and J. W. Love, Circulation 40 (Suppl. Ill), 132 (1969).Google Scholar
  8. 8.
    J. W. Love, K. B. Lewis, R. E. Fischell, and J. Schulman, Ann. Thorac. Surg. 17, 152 (1974).CrossRefGoogle Scholar
  9. 9.
    J. H. Schulman, Pacesetter Systems, Inc., personal communication.Google Scholar
  10. 10.
    S. H. Stertzer, N. P. DePasquale, L. J. Conn, and M. S. Bruno, Pace 1, 186–188 (1978).CrossRefGoogle Scholar
  11. 11.
    S. U. Falk and A. J. Salkind, Alkaline Storage Batteries, Wiley, New York (1969).Google Scholar
  12. 12.
    A. J. Salkind, Batteries, Secondary (Alkaline Cells), Encyclopaedia of Chemical Technology Vol. 3 (Kirk-Othmer, ed.), Wiley, New York (1978).Google Scholar
  13. 13.
    P. C. Milner and U. B. Thomas, The nickel-cadmium cell, in: Advances in Electrochemistry and Electrochemical Engineering, Vol. 5 (P. Delahay and C. W. Tobias, eds.) Interscience, New York (1967).Google Scholar
  14. 14.
    H. Bode, K. Dehmelt, and J. Witte, Nickel Hydroxide Hydrate, paper presented at CITCE Meeting, Strasburg, France (1965).Google Scholar
  15. 15.
    E. J. Rubin and R. Baboian, J. Electrochem. Soc. 118, 583 (1970).Google Scholar
  16. 16.
    M. Oshitani, M. Yamane, and S. Hattori, Power Sources, Vol. 8 (J. Thompson, ed.), Academic Press (1980).Google Scholar
  17. 17.
    R. E. Fischell and J. H. Schulman, Proc. 11th IECEC, American Inst, of Chemical Engineers, pp. 163, New York (1976).Google Scholar
  18. 18.
    S. Ruben, U. S. Patent 2,554,504 (May 29, 1951).Google Scholar
  19. 19.
    S. Ruben, The mercuric oxide-zinc cell, in: The Primary Battery (G. W. Heise and N. C. Cahoan, eds.), pp. 207–222, Wiley, New York (1971).Google Scholar
  20. 20.
    F. G. Fagan, U.S. Patent, 3,824,129 (March 14, 1973).Google Scholar
  21. 21.
    G. F. O. Tyers, R. H. Foresman, C. K. Park, E. H. Lerner, H. A. Torman, and J. A. Waldhausen, J. Thorac. Cardiovasc. Surg. 62, 763–768 (1971).Google Scholar
  22. 22.
    G. F. O. Tyers, R. A. Foresman Jr., R. R. Brownlee, C. Volz, N. J. Manley, and J. B. Dixon, J. Surg. Res. 16, 262–267 (1974).CrossRefGoogle Scholar
  23. 23.
    F. G. O. Tyers, R. R. Brownlee, H. C. Hughes Jr., C. Volz, N. J. Manley, and J. A. Waldhausen, 28th Proc. Am. Conf. Eng. Med. Biol. (C. Chase, ed.), pp. 92, New Orleans, Louisiana (1975).Google Scholar
  24. 24.
    R. R. Brownlee, G. F. O. Tyers, C. Volz, Sr., U.S. Patent 4,014,346 (March 29, 1977).Google Scholar
  25. 25.
    G. F. O. Tyers, R. R. Brownlee, H. C. Hughes Jr., J. H. Danadii, and C. Volz, J. Surg. Res. 20, 405–411 (1976).CrossRefGoogle Scholar
  26. 26.
    G. F. O. Tyers and R. R. Brownlee, Prop. Cardiovasc. Diseases 2, 421–434 (1981).CrossRefGoogle Scholar
  27. 27.
    G. F. O. Tyers, H. C. Hughes Jr., R. R. Brownlee, N. J. Manley, and I. N. Goreman, Am. J. Cardiol. 38, 607–610 (1976).CrossRefGoogle Scholar
  28. 28.
    P. Ruetschi, Power Sources, Vol. 7, pp. 533 (J. Thompson, ed.), Academic Press, London (1979).Google Scholar
  29. 29.
    K. M. Abraham and S. B. Brummer, Secondary lithium cells, in: Lithium Batteries (J. P. Gabano, ed.), Academic Press, New York (1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gerhard L. Holleck
    • 1
  1. 1.Battery DivisionEIC Laboratories, Inc.NorwoodUSA

Personalised recommendations