Electrically Driven Implantable Prostheses

  • Alvin J. Salkind
  • Alan J. Spotnitz
  • Barouh V. Berkovits
  • Boone B. Owens
  • Kenneth B. Stokes
  • Michael Bilitch


The electrochemical and electrical nature of muscular and biological reactions has been known for centuries. The work of Galvani in the eighteenth century in his famous frog leg experiment as a Professor of Anatomy at Padua University, led to Volta’s experiments and epochal discovery of the production of electricity by electrochemical reactions. Galvani also observed what is now known as “injury potential,” the voltage difference between an injured area and the surrounding tissue. The existence of dc or time-varying electrical activity with the majority of physical and chemical processes in living organisms has also been well established. More recently, the electrophysiological aspects of living tissue were investigated by Drs. Yasuda and Fukada.(1)


Cardiac Pacemaker Implantable Device Cardiac Pace Pacemaker Lead Lithium Anode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fukada and I. Yasuda, On the piezoelectricity of bone, J. Phys. Soc. Jap. 12, 1158–1162 (1957).CrossRefGoogle Scholar
  2. 2.
    J. H. Brown, J. E. Jacobs, and L. Stark, Biomedical engineering in the United States, Biomed. Eng. 6, 405–408 (1971).Google Scholar
  3. 3.
    Committee on Technology and Health Care System, Medical Technology and the Health Care System, National Academy of Sciences, Washington, D.C. (1979).Google Scholar
  4. 4.
    P.N. Sawyer, Application of electrochemical techniques to the solution of problems in medicine, J. Electrochem. Soc. 125, 419C-436C (1978).CrossRefGoogle Scholar
  5. 5.
    R. D. Gold, Cardiac pacing—from then to now, Med. Instrum. 18, 15–21 (1984).Google Scholar
  6. 6.
    D. J. W. Escher, Pacemakers of the 1980’s, Med. Instrum. 18, 29–33 (1984).Google Scholar
  7. 7.
    S. Ekestrom, L. Johansson, and H. Lagergren, Behandling av Adams-Stokes syndrom med en intracardiell pacemaker elektro, Opusc. Med. 7, 1–3 (1962).Google Scholar
  8. 8.
    K. Brennen and B. Owens, in Medical Batteries: Lithium Battery Technology (H. V. Venka-tasetty, ed.), pp. 139–158, Wiley, New York (1984).Google Scholar
  9. 9.
    S. Furman and R. Whitman, Cardiac pacing and pacemakers IX: Statistical analysis of pacemaker data, Am. Heart J. 95, 115–125 (1978).CrossRefGoogle Scholar
  10. 10.
    K. Stokes and N. L. Stephenson, The implantable cardiac pacing lead—just a simple wire? in: The Third Decade of Cardiac Pacing (S. Barold and J. Mugica, eds.), pp. 365–416, Futura, Mount Kisco, New York (1982).Google Scholar
  11. 11.
    P. Citron and E. A. Dickhudt, Endocardial electrode, U.S. Patent No. 3902501 (1975).Google Scholar
  12. 12.
    H. Mond and G. Sloman, The small-tined pacemaker lead—absence of dislodgment, PACE 3, 171–177 (1980).CrossRefGoogle Scholar
  13. 13.
    I. Babotai and W. E. Meier, Erste klinische ehrfahrungen mit der neuen intrakardialen electrode helifix, Schweiz Med. Wochenschr. 107, 1592–1593 (1977).Google Scholar
  14. 14.
    H. D. Dahl, H. Lubbing, D. W. Behrenbeck, B. Schorn, and H. Dalichau, Clinical experiences with electrodes for endocardial implantation with helically coiled tips, PACE 4, A-39, Abst. (1981).Google Scholar
  15. 15.
    D. C. MacGregor, G. J. Wilson, W. Lixfeld, R. M. Pilliar, J. D. Bobyn, M. D. Silver, S. Smardon, and S. L. Miller, The porous-surfaced electrode: A new concept in pacemaker lead design, J. Thorac. Cardiovasc. Surg. 78, 281–291 (1979).Google Scholar
  16. 16.
    A. G. Wallace, Electrical activity of the heart, in: The Heart, Arteries and Veins, 5th Ed., (J. W. Hurst, ed.), pp. 115–127, McGraw-Hill, New York (1983).Google Scholar
  17. 17.
    W. Irnich, Engineering concepts of pacemaker electrodes in: Advances in Pacemaker Technology (M. Schaldach and S. Furman, eds.), pp. 241–272, Springer-Verlag, New York (1975).Google Scholar
  18. 18.
    S. Furman, P. Hurzeler, and B. Parker, Clinical thresholds of endocardial cardiac stimulation: A long term study, J. Surg. Res. 19, 149–155 (1975).CrossRefGoogle Scholar
  19. 19.
    L. Lapicque, Definition experimentale de l’excitabilité, C. R. Soc. Biol. 67, 280–283 (1909).Google Scholar
  20. 20.
    G. Weiss, Sur la possibilité de rendre comparable entre eux les appareils cervant à l’excitation électrique, Arch. Ital. Biol. 35, 413–446 (1901).Google Scholar
  21. 21.
    E. Sowton and J. Norman, Variation in cardiac stimulation threshold in patients with pacing electrodes, in Digest, 7th International Conference on Medical and Biological Engineering, Stockholm, 1967 (B. Jacobson, ed.), pp. 74, Stockholm, Sweden (1967).Google Scholar
  22. 22.
    T. A. Preston, R. D. Judge, B. R. Lucchesi, and D. L. Bowers, Myocardial threshold in patients with artificial pacemakers, Am. J. Cardiol. 18, 83–89 (1966).CrossRefGoogle Scholar
  23. 23.
    W. Irnich, The Chronaxie time and its practical importance, PACE 3, 292–301 (1980).CrossRefGoogle Scholar
  24. 24.
    A. Ripart and J. Mugica, Electrode-heart interface: Definition of the ideal electrode, PACE 6, 410–421 (1983).CrossRefGoogle Scholar
  25. 25.
    S. S. Barold, L. S. Ong, and R. A. Heinle, Stimulation and sensing thresholds for car-iac pacing: Electrophysiologic and technical aspects, Prog. Cardiovasc. Dis. 24, 1–24 (1981).CrossRefGoogle Scholar
  26. 26.
    D. C. Amundson, W. McArthur, and M. Mostafa, The porous endocardial electrode, PACE 2, 40–50 (1979).CrossRefGoogle Scholar
  27. 27.
    K. Breivik, O. J. Ohm, and H. Engedal, Acute and chronic pulse-width thresholds in solid versus porous tip electrodes, PACE 5, 650–655 (1982).CrossRefGoogle Scholar
  28. 28.
    N. D. Berman, S. E. Dickson, and I. M. Lipton, Acute and chronic clinical performance comparison of a porous and solk electrode design, PACE 5, 67–71 (1982).CrossRefGoogle Scholar
  29. 29.
    G. J. Richter, E. Weidlich, F. V. Sturm, E. David, G. Brandt, M. Elmqvist, and A. Thoren, Nonpolarizable vitreous carbon pacing electrodes in animal experiments, in: Proceedings of the VI World Symposium on Cardiac Pacing, Montreal 1979 (C. Merre, ed.), Pacesymp. Chapter 29, pp. 13, Montreal (1979).Google Scholar
  30. 30.
    H. Elmqvist, H. Schueller, and G. Richter, The carbon tip electrode, PACE 6, 436–439 (1983).CrossRefGoogle Scholar
  31. 31.
    M. P. Kleinert, H. R. Bartsch, and K. G. Muhlenpfordt, Comparative studies of ventricular and atrial stimulation thresholds of carbon-tip electrodes, PACE 6, A-64, Abst. (1983).Google Scholar
  32. 32.
    G. A. Bornzin, K. B. Stokes, and W. A. Wiebusch, A low threshold, low polarization platinized endocardial electrode, PACE 6, A-70, Abst. (1983).Google Scholar
  33. 33.
    F. Heinemann, M. Davis, and J. Heiland, Clinical performance of a pacing lead with a platinized target tip electrode, PACE 7, 471, Abst. (1984).Google Scholar
  34. 34.
    K. Breivik, P. I. Hoff, A. Tronstad, H. Eugedal, and O. J. Ohm, Promising new pacemaker lead, PACE 7, 465, Abst. (1984).Google Scholar
  35. 35.
    P. Chen, A. Salkind, S. Fich, and V. Parsonnet, A basic study of pacemaker electrodes, in Proceedings, 30th Annual Conference on Engineering in Medicine and Biology, Los Angeles, CA, 1977, pp. 133, AEMB, Bethesda, Maryland (1977).Google Scholar
  36. 36.
    P. Chen, K. Chatterjee, P. Katz, G. Myers, and V. Parsonnet, Effects of electrode size and location on pacemaker induced fibrillation in acute myocardial infarction, in: Proceedings, 28th Annual Conference on Engineering in Medicine and Biology, New Orleans, LA, 1975, pp. 87, AEMB, Chevy Chase, Maryland (1975).Google Scholar
  37. 37.
    P. C. Chen, A Study of Factors Influencing Pacemaker’s Stimulation Threshold, Fibrillation Threshold and R-Wave Detection, PhD. thesis, Rutgers University (1977).Google Scholar
  38. 38.
    K. B. Stokes, G. A. Bornzin, and W. A. Wiebusch, A steroid-eluting, low threshold, low polarizing electrode, in: Cardiac Pacing, Proceedings of the VIIth World Symposium on Cardiac Pacing, Vienna, 1983 (K. Steinbach, D. Glogar, A. Laszkovies, W. Scheibelhofer, and H. Weber, eds.), pp. 369–376, Steinkopff Verlag, Darmstadt (1983).Google Scholar
  39. 39.
    G. C. Timmis, S. Gordon, D. C. Westveer, J. R. Stewart, K. B. Stokes, and J. R. Heiland, A new steroid-eluting, low threshold pacemaker lead, in: Cardiac Pacing, Proceedings of the VIIth World Symposium on Cardiac Pacing, Vienna, 1983 (K. Steinbach, D. Glogar, D. Lasz-kovics, W. Scheibelhofer, and H. Weber, eds.), pp. 361–367, Steinkopff Verlag, Darmstadt (1983).Google Scholar
  40. 40.
    G. C. Timmis, V. Parsonnet, D. C. Westveer, J. Stewart, and S. Gordon, Late effects of a steroid-eluting porous titanium pacemaker lead electrode in man, PACE 7, 479, Abst. (1984).Google Scholar
  41. 41.
    I. Yasuda, The classic fundamental aspects of fracture treatment, J. Kyoto Med. Soc. 4, 395–406 (1953).Google Scholar
  42. 41.
    I. Yasuda, Translation: Clin. Orthop. 124, 5–8 (1977).Google Scholar
  43. 42.
    Z. B. Friedenberg, E. T. Andrews, B. I. Smolenski, B. W. Pearl, and C. T. Brighton, Bone reaction to varying amounts of direct current, Surg. Gynecol. Obstet. 131, 894–899 (1970).Google Scholar
  44. 43.
    Z. B. Friedenberg, P. G. Roberts, N. H. Didizian, and C. T. Brighton, Stimulation of fracture healing by direct current in the rabbit fibula, J. Bone Joint Surg. 53A, 1400–1408 (1971).Google Scholar
  45. 44.
    L. S. Lavine, I. Lustrin, M. H. Shamos, R. A. Rinaldi, and A. R. Liboff, Electrical enhancement of bone healing, Science 175, 1118–1121 (1972).CrossRefGoogle Scholar
  46. 45.
    L. S. Lavine, I. Lustrin, M. H. Shamos, Treatment of congenital pseudoarthrosis of the tibia with direct current, Clin. Orthop. 124, 69–74 (1977).Google Scholar
  47. 46.
    T. E. Jorgensen, Effect of electric current on the healing time of crural fractures, Acta Orthop. Scand. 43, 421–437 (1972).CrossRefGoogle Scholar
  48. 47.
    T. E. Jorgensen, Electrical stimulation of human fracture healing by means of a slow pulsing asymetrical direct current, Clin. Orthop. 124, 124–127 (1977).Google Scholar
  49. 48.
    K. P. Srivastava and A. K. Saxena, Electrical stimulation in delayed union of long bones, Acta Orthop. Scand. 48, 561–565 (1977).CrossRefGoogle Scholar
  50. 49.
    C. T. Brighton, S. Adler, J. Black, N. Itada, and Z. B. Friedenberg, Cathodic oxygen consumption and electrically induced osteogenesis, Clin. Orthop. 107, 277–282 (1975).CrossRefGoogle Scholar
  51. 50.
    C. T. Brighton, Z. B. Friedenberg, E. I. Mitchell, and R. E. Booth, Treatment of non-union with constant direct current, Clin. Orthop. 124, 106–123 (1977).Google Scholar
  52. 51.
    D. C. Paterson, T. M. Hillier, R. F. Carter, J. Ludbrook, G. M. Maxwell, and J. P. Savage, Electrical bone-growth stimulation in an experimental mode of delayed union, Lancet, 1, 1278–1281, June 18 (1977).CrossRefGoogle Scholar
  53. 52.
    J. F. Connolly, H. Hahn, and O. M. Jardon, The electrical enhancement of periosteal proliferation in normal and delayed fracture healing, Clin. Orthop. 124, 97–105 (1977).Google Scholar
  54. 53.
    C. R. Hassler, E. F. Rybicki, R. B. Diegle, and L. C. Clark, Studies of enhanced bone healing via electrical stimuli, Clin. Orthop. 124, 9–19 (1977).Google Scholar
  55. 54.
    W. H. Harris, B. J. L. Moyen, E. L. Thrasher, L. A. Davis, R. H. Cobden, D. A. MacKenzie, and J. K. Cywiński, Differential response to electrical stimulation, Clin. Orthop. 124, 31–40 (1977).Google Scholar
  56. 55.
    J. McKnight, Private communication to A. J. Salkind (1976).Google Scholar
  57. 56.
    C. A. L. Basse«, R. J. Pawluk, and A. A. Pilla, Acceleration of fraction repair by electromagnetic fields: A surgically noninvasive method, Ann NY Acad Sci. 238, 242–262 (1974).CrossRefGoogle Scholar
  58. 57.
    C. A. L. Basse«, A. A. Pilla, R. J. Pawluk, A nonoperative salvage of surgically resistant pseudoarthrosis and nonunions by pulsing electromagnetic fields, Clin. Orthop. 124, 128–143 (1977).Google Scholar
  59. 58.
    Z. B. Friedenberg, M. C. Harlow, and C. T. Brighton, Healing of nonunion of the medial malleolus by means of direct current: A case report, J. Trauma 11, 883 (1971).CrossRefGoogle Scholar
  60. 59.
    C. T. Brighton, R. D. Ray, L. W. Soble, and K. E. Kuettner, In vitro epiphyseal plate growth in various oxygen tensions, J. Bone Joint Surg. 51A, 1383–1396 (1969).Google Scholar
  61. 60.
    A. B. Borle, N. Nichols, and G. Nichols, Metabolic studies of bone in vitro: I. Normal bone, J. Biol. Chem. 235, 1206–1210 (1960).Google Scholar
  62. 61.
    D. S. Howell, J. C. Pita, J. F. Marquez, and J. E. Mandruga, Partition of calcium, phosphate and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage, J. Clin. Invest. 47, 1121–1132(1968).CrossRefGoogle Scholar
  63. 62.
    Osteostim Implantable Bone Growth Stimulator Model S12—For Use with Long Bone Fusion, Telectronics Pty. Ltd., Commercial Literature Z Sirius Road, Lane Cove, N.S.W. 2066 Australia.Google Scholar
  64. 63.
    Osteostim-implantable Bone Growth Stimulators—A Summary of Clinical Results, Product Literature, Osteostim Division, Telectronics Pty. Ltd., 8515 E. Orchard Road, Englewood, Colorado 80111, May (1981).Google Scholar
  65. 64.
    D. C. Paterson, G. N. Lewis, and C.A. Cass, Treatment of delayed union and nonunion with an implanted direct current stimulator, Clin. Orthop. 148, 117–128 (1980).Google Scholar
  66. 65.
    K. D. Nielson, J. E. Adams, and Y. Hosobuchi, Phantom limb pain, treatment with dorsal column stimulation, J. Neurosurg. 42, 301–307 (1975).CrossRefGoogle Scholar
  67. 66.
    W. H. Sweet and J. G. Wepsic, Stimulation of the posterior columns of the spinal cord for pain control: Indications, technique and results, Clin. Neurosurg. 21, 278–310 (1974).Google Scholar
  68. 67.
    L. J. Seligman, P. P. Tarjan, and R. Davis, A totally implantable pulse generator for the CNS, in: Proceedings, 31st Annual Conference on Engineering in Medicine and Biology, Atlanta, GA, 1978, pp. 270, AEMB, Bethesda, Maryland (1978).Google Scholar
  69. 68.
    A. J. Matas, D. E. R. Sutherland, and J. S. Najarian, Current status of islet and pancreas transplantation in diabetes, Diabetes 25, 785–795 (1976).Google Scholar
  70. 69.
    J. V. Santiago, A. H. Clemens, W. L. Clarke, and D. M. Kipnis, Closed-loop and open-loop devices for blood glucose control in normal and diabetic subjects, Diabetes 28, 71–84 (1979).Google Scholar
  71. 70.
    J. S. Soeldner, K. W. Chang, S. Aisenberg, and J. M. Hiebert, Progress towards an implantable glucose sensor and an artificial beta cell, Temporal Aspects of Therapeutics (J. Urquhart and F. E. Yates, eds.),Plenum, New York, pp. 181–207 (1973).Google Scholar
  72. 71.
    S. Deutsch, An implanted telemetry unit for ambulatory animals, IEEE Trans. Commun, com-23, 983–987 (1975).CrossRefGoogle Scholar
  73. 72.
    S. Deutsch and J. W. Mackenzie, Time-multiplex telemetry of seven intensive care parameters, in: Proceedings, 31st Annual Conference on Engineering in Medicine and Biology, Atlanta, GA, 1978, pp. 282, AEMB, Bethesda, Maryland (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alvin J. Salkind
    • 1
  • Alan J. Spotnitz
    • 2
  • Barouh V. Berkovits
    • 3
  • Boone B. Owens
    • 4
  • Kenneth B. Stokes
    • 5
  • Michael Bilitch
    • 6
  1. 1.Department of Surgery, Bioengineering SectionUMDNJ-Rutgers Medical SchoolPiscatawayUSA
  2. 2.Department of Surgery, Thoracic SectionUMDNJ-Rutgers Medical SchoolPiscatawayUSA
  3. 3.New England Research CenterWellesleyUSA
  4. 4.Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA
  5. 5.Medtronic, Inc.MinneapolisUSA
  6. 6.USC Pacemaker CenterLos AngelesUSA

Personalised recommendations