Transglutaminase-Mediated Cross-Linking of Proteins and Cell Ageing: The Erythrocyte and Lens Models

  • L. Lorand
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


The illustration in Fig. 1, reproduced from a publication of Heinrich Waelsch in 19621, might be the best starting point for discussing the biological functions of transglutaminases. Waelsch, the discoverer of this interesting family of protein-remodelling enzymes, was clearly aware of the possibility — which is the main topic of my presentation — that they may be involved in the cross-linking of proteins by Nε-(γ-glutamyl) lysine bridges, marked as reaction (3) in Fig. 1. For lack of an adequate test system, however, he was unable to prove this hypothesis. Rather, he focused on reaction (1), i.e. the incorporation of naturally occurring and synthetic amines into proteins, and devoted particular attention to the coupling of histamine to proteins in endotoxin-related biological phenomena. He theorized that the transglutaminase-mediated incorporation of amines “could produce modified body proteins which might interfere with enzymatic activities.....or might possess antigenic properties”2. The latter suggestion gains some support from the high incidence of autoimmune diseases following treatment with isoniazid and hydralazine, two drugs which — similarly to histamine — can serve as amine substrates for transglutaminases3,4. An enzymatic, “hit and run” type of accidental modification of proteins by drugs such as these could conceivably provoke a breakdown of immune tolerance against the parent protein itself.


Factor Xiii Lens Fiber Cell Coagulation Factor Xiii Rabbit Lens High Pressure Liquid Chroma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Waelsch, The Amine Incorporating System. Transglutaminase, in “Monoamines et Systeme Nerveux Central,” J. Ajuriagerra, ed., Georg et Companie S.A., Geneva and Masson et Companie, Paris (1962).Google Scholar
  2. 2.
    N. K. Sarkar, D. D. Clarke, and H. Waelsch, An Enzymically Catalyzed Incorporation of Amines into Proteins, Biochim. Biophys. Acta 25:451 (1957).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Lorand, L. K. Campbell, and B. J. Robertson, Enzymatic Coupling of Isoniazid to Proteins, Biochemistry 11:434 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    L. Lorand and S. M. Conrad, Transglutaminases, Molec. Cellul. Biochem. 58:9 (1984).CrossRefGoogle Scholar
  5. 5.
    L. Lorand, N. G. Rule, H. H. Ong, R. Furlanetto, A. Jacobsen, J. Downey, N. Oner, and J. Bruner-Lorand, Amine Specificity in Transpeptidation. Inhibition of Fibrin Cross-linking, Biochemistry 7:1214 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Shen and L. Lorand, Contribution of Fibrin Stabilization to Clot Strength. Supplementation of Factor XIII-deficient Plasma with the Purified Zymogen, J. Clin. Inv. 71:1336 (1983).CrossRefGoogle Scholar
  7. 7.
    C. G. Curtis, P. Stenberg, K. L. Brown, A. Baron, K. Chen, A. Gray, I. Simpson, and L. Lorand, Kinetics of Transamidating Enzymes. Production of Thiol in the Reactions of Thiol Esters with Fibrinoligase, Biochemistry 13:3257 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Stenberg, C. G. Curtis, D. Wing, Y. S. Tong, R. B. Credo, A. Gray, and L. Lorand, Transamidase Kinetics. Amide Formation in the Enzymic Reactions of Thiol Esters with Amines, Biochem. J. 147:155 (1975).Google Scholar
  9. 9.
    L. Lorand, S. N. P. Murthy, P. T. Velasco, and F. Karush, Identification of Transglutaminase Substrates in Inside-out Vesicles from Human Erythrocytes. Immunoblotting with Anti-dansyl Antibody, Biochem, Biophys. Res, Comm. 134:685 (1986).CrossRefGoogle Scholar
  10. 10.
    L. Lorand, A. J. Gray, K. Brown, R. B. Credo, C. G. Curtis, R. A, Domanik, and P. Stenberg, Dissociation of the Subunit Structure of Fibrin Stabilizing Factor during Activation of the Zymogen, Biochem. Biophys. Res. Comm. 56:914 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Lorand, G. E. Siefring Jr., Y. S. Long, J. Bruner-Lorand, and A. J. Gray Jr., Dansylcadaverine Specific Staining for Transamidating Enzymes, Anal. Biochem. 93:453 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Lorand, O. M. Lockridge, L. K. Campbell, R. Myhrman, and J. Bruner-Lorand, Transamidating Enzymes II. A Continuous Fluorescent Method Suited for Automating Measurements of Factor XIII in Plasma, Anal. Biochem, 44:221 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Lorand and L. K. Campbell, Transamidating Enzymes I. Rapid Chromatographic Assays, Anal. Biochem. 44:207 (1971).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Griffin, J. Wilson, and L. Lorand, High Pressure Liquid Chromatographic Procedure for the Determination of ε(γ-Glutamyl)Lysine in Proteins, Anal. Biochem. 124:406 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Lorand, R. F. Doolittle, K. Konishi, and S. K. Riggs, A New Class of Blood Coagulation Inhibitors, Arch. Biochem. Biophys. 102:171 (1963).PubMedCrossRefGoogle Scholar
  16. 16.
    A. C. Notides and H. G. Williams-Ashman, The Basic Protein Responsible for the Clotting of Guinea Pig Semen, Proc. Natl. Acad. Sci. USA, 58:1991 (1967).PubMedCrossRefGoogle Scholar
  17. 17.
    H. G. Williams-Ashman, A. C. Notides, S. S. Pabalan, and L. Lorand, Transamidase Reactions Involved in the Enzymic Coagulation of Semen: Isolation of γ-Glutamy1-ε-Lysine Dipeptide from Clotted Secretion Protein of Guinea Pig Seminal Vesicle, Proc. Natl. Acad. Sci. USA, 69:2322 (1972).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Lorand, G. E. Siefring Jr., and L. Lowe-Krentz, Enzymatic Basis of Membrane Stiffening in Human Erythrocytes, Seminars in Hematol. 16:65 (1979).Google Scholar
  19. 19.
    B. D. Smith, P. L. LaCelle, G. E. Siefring Jr., L. Lowe-Krentz, and L. Lorand, Effects of Calcium-Mediated Enzymatic Cross-Linking of Membrane Proteins on Cellular Deformability, J. Membr. Biol. 61:75 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    K. R. Hightower and M. Dering, Development and Reversal of Calcium-Induced Opacities in vitro, Invest. Ophthalmol. Vis. Sci. 25:1108 (1984).PubMedGoogle Scholar
  21. 21.
    L. Lorand, S. M. Conrad, and P. T. Velasco, Inhibition of β-Crystallin Cross-Linking in the Ca2+-Treated Lens, Invest. Ophthalmol. Vis. Sci. 28:1218 (1987).PubMedGoogle Scholar
  22. 22.
    G. E. Siefring Jr., A. B. Apostol, P. T. Velasco, and L. Lorand, Enzymatic Basis for the Ca2+-Induced Cross-Linking of Membrane Proteins in Intact Human Erythrocytes, Biochemistry 17:2598 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Lorand, N. Barnes, J. A. Bruner-Lorand, M. Hawkins, and M. Michalska, Inhibition of Protein Cross-Linking in Ca2+-Enriched Human Erythrocytes and Activated Platelets, Biochemistry 26:308 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    O. J. Bjerrum, M. Hawkins, P. Swanson, M. Griffin, and L. Lorand, An Immunochemical Approach for the Analysis of Membrane Protein Alterations in Ca2+-Loaded Human Erythrocytes, J. Supramol. Struct. and Cell Biochem. 16:289 (1981).CrossRefGoogle Scholar
  25. 25.
    R. W. Carrell, H. Lehmann, and H. E. Hutchinson, Haemoglobin Koln (β-98 Valine → Methionine): An Unstable Protein Causing Inclusion Body Anaemia, Nature 210:915 (1966).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Lorand, L. K. H. Hsu, G. E. Siefring Jr., and N. S. Rafferty, Lens Transglutaminase and Cataract Formation, Proc. Natl. Acad. Sci. USA, 78:1356 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    P. T. Velasco and L. Lorand, Cross-Linking of Lens Crystallins by Ca2+-Dependent Transglutaminase, Invest. Ophthalmol. Vis. Sci. 27 No. 3: 273 (1986).Google Scholar
  28. 28.
    P. T. Velasco and L. Lorand, Acceptor-Donor Relationships in the Transglutaminase-Mediated Cross-Linking of Lens β Crystallin Subunits, Biochemistry, In Press (1987).Google Scholar
  29. 29.
    M. McFall-Ngai, J. Horwitz, L. L. Ding, and L. Lacey, Age-Dependent Changes in the Heat-Stable Crystallin, β Bp, of the Human Lens, Current Eye Res. 5:387 (1986).CrossRefGoogle Scholar
  30. 30.
    P. T. Velasco and L. Lorand, β Bp Crystallins Participate as Lysine Donors in Forming Nε-(γ-Glutamy1)Lysine Cross-Linked Dimers in Reaction with Transglutaminase, Invest. Ophthalmol. Vis. Sci. 28 No. 3: 386 (1987).Google Scholar
  31. 31.
    L. Lorand, Activation of Blood Coagulation Factor XIII, Ann. N.Y. Acad. Sci. 485:144 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    J. A. Shafer, S. D. Lewis, T. J. Janus, and L. Lorand, Ann. N.Y. Acad. Sci. 485:134 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • L. Lorand
    • 1
  1. 1.Department of Biochemistry, Molecular Biology and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations