Probable Macromolecular Mechanisms of Gene Regulation by Adenosine Diphosphoribosyl Transferase (ADPRT)

  • Ernest Kun
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


The basic macromolecular model of gene regulation consists of protein-DNA interactions (1), which may be sorted into at least two large groups: a.) positive and negative acting transcriptional factors, regulating DNA-transcription at any part of the transcriptional unit(s). The stability of complexes, consisting of regulatory proteins and specific transcription units may play a significant role in molecular memory, which constitutes a probable mechanism of cell commitment (2). The second, more complex role of DNA-binding proteins b.) is their participation in supramolecular structural regulation (protein-protein and protein-DNA binding as it occurs in coiled vs. uncoiled chromatin (3)). There appears to be a superimposed control function of b.) over a.) as coiled chromatin is assumed to be transcriptionally inactive, whereas localized relaxation (uncoiling of chromatin) brings into focus the regulatory forces operative in a.). It may be postulated that the cell physiological responses traceable to a.) and b.) are dependent on the molecular anatomy of a particular cell type.


Topological Effect Tumorigenic Cell Partial Amino Acid Sequence Cholesterol Oxide Cell Physiological Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Darnell, H. Lodish and D. Baltimore, Gene control in eukaryotes, in: “Molecular Cell Biology”, W. H. Freeman, Scientific American Books, New York (1986).Google Scholar
  2. 2.
    D. D. Brown, The role of stable complexes that repress and activate eukaryotic genes, Cell 37: 359 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Weisbrod, Active chromatin, Nature 297:289 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Basarga, “The biology of cell reproduction”, Harvard University Press, Cambridge, (1985).Google Scholar
  5. 5.
    S. Shall, Inhibition of DNA repair by inhibitors of nuclear ADP-ribosyl transferase, in: “DNA Repair and its Inhibition”, (Nucleic Acids Symposium Series No.13) 9:143, A. Collins, CS. Downes and R.T. Johnson, eds., IRL Press, Oxford (1984).Google Scholar
  6. 6.
    J. C. Gaal and C. K. Pearson, Eukaryotic nuclear ADP-ribosylations, Biochem. J. 230:1 (1985).PubMedGoogle Scholar
  7. 7.
    P. I. Bauer, A. Hakam and E. Kun, Mechanisms of poly(ADP-ribose) polymerase catalysis: mono-ADP-ribosylation of poly(ADP-ribose) polymerase at nanomolar concentrations of NAD, FEBS Lett. 195:331 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Minaga, J. McLick, N. Pattabiraman and E. Kun, Steric inhibition of phenylboronate complex formation of 2′-(5″-phosphoribosyl)-5′-AMP, J. Biol. Chem. 257: 11942 (1982).PubMedGoogle Scholar
  9. 9.
    T. Minaga, and E. Kun, Spectral analysis of the conformation of polyadenosine diphosphoribose: evidence indicating secondary structure, J. Biol. Chem. 258: 725 (1983).PubMedGoogle Scholar
  10. 10.
    T. Minaga and E. Kun, Probable helical conformation of poly(ADP-ribose), J. Biol. Chem. 258: 5726 (1983).PubMedGoogle Scholar
  11. 11.
    A. Hakam, J. McLick and E. Kun, Separation of poly(ADP-ribose) by high performance liquid chromatography, J. Chromatogr. 296: 369 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Hakam, J. McLick, K. Buki and E. Kun, Catalytic activities of synthetic octadeoxyribonucleotides as coenzymes of poly(ADP-ribose) polymerase and the identification of a new enzyme inhibitory site, FEBS Lett. 212: 73 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Kun, T. Minaga, E. Kirsten, A. Hakam, G. Jackowski, A. Tseng, jr. and M. Brooks, Possible participation of nuclear poly(ADP-ribosyl)ation in hormonal mechanisms, in: “Biochemical Actions of Hormones”, G. Litwack, ed., Academic Press, New York (1986).Google Scholar
  14. 14.
    I. Scovassi, R. Izzo, E. Franchi and V. Bertazzoni, Structural analysis of Poly(ADP-ribose) polymerase in higher and lower eukaryotes, Eur. J. Biochem. 159: 77 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    G. T. Williams, ADP-ribosyltransferase in protozoan differentiation, in: “ADP-ribosylation of Proteins”, F. R. Althaus, H. Hilz and S. Shall, eds., Springer, New York (1985).Google Scholar
  16. 16.
    A. I. Caplan, Poly(ADP-Ribose) synthetase and cell differentiation, in: “ADP-ribosylation of Proteins”, F. R. Althaus, H. Hilz and S. Shall, eds., Springer, New York, (1985).Google Scholar
  17. 17.
    K. Buki, E. Kirsten and E. Kun, Isolation of adenosinediphosphoribosyl transferase by affinity precipitation with reactive Red-120 combined with affinity chromatography, Anal. Biochem., submitted (1987).Google Scholar
  18. 18.
    K. Buki, A. Patthy and E. Kun, Isolation and characterization of polypeptides obtained from adenosinediphosphoribosyl transferase by plasmin digestion (manuscript in preparation).Google Scholar
  19. 19.
    J. McLick, P.I. Bauer, A. Hakam and E. Kun, Covalent binding of 4-carbamoylbenzenediazonium chloride to deoxyguanine bases of DNA resulting in apparent irreversible inhibition of poly(ADP-ribose) polymerase at the nicotinamide binding site, Biochemistry 26: 2226 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Hakam, J. McLick, K. Buki and E. Kun, Effect of selected octadeoxy-ribonucleotides and 6-amino-1,2-benzopyrone on poly(ADP-ribose) transferase activity, in: “Proceedings of 8th international symposium on ADP-ribosylation reactions”, Fort Worth (1987).Google Scholar
  21. 21.
    S. Sastry and E. Kun, Molecular interactions between DNA, poly(ADP-ribose) polymerase and histones (manuscript in preparation).Google Scholar
  22. 22.
    S. Sastry and E. Kun, DNAase I footprinting of poly(ADP-ribose) polymerase with restriction fragments (experiments in progress).Google Scholar
  23. 23.
    R. L. Blake, S. L. Blake, H. H. Loh and E. Kun, The effect of nicotinamide and homologs on the activity of inducible enzymes and NAD content of the rat liver, Mol. Pharmacol. 3: 412 (1967).PubMedGoogle Scholar
  24. 24.
    T. Minaga, L. Marton, W. N. Piper and E. Kun, Induction of cardiac L-ornithine decarboxylase by nicotinamide and its regulation by putrescine, Eur. J. Biochem. 91: 577 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    M. J. Griffin, E. Kirsten, R. Carubelli, R. B. Palokodety, J. McLick and E. Kun, The in vivo effect of benzamide and phénobarbital on liver enzymes: poly(ADP-ribose) polymerase, cytochrome P-450, styrene oxide hydrolase, cholesterol oxide hydrolase, glutathiones-transferase and UDP-glucuronyl transferase, Biochem. Biophys. Res. Comm. 122:770 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    N. Kimura, N. Kimura, G. Catahala, J. D. Baxter and G. S. Johnson, Nicotinamide and its derivatives increase growth hormone and prolactin synthesis in cultured GH3 cells: role for ADP-Ribosylation in modulating specific gene expression, DNA 2: 195 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Jackowski and E. Kun, The Effect of in vitro treatment with triiodothyronine on the in vitro synthesis of protein-poly(ADP-ribose) adducts by isolated cardiocyte nuclei and the separation of poly ADP-ribosylated proteins by phenol extraction and electrophoresis, J. Biol. Chem. 258: 12587 (1983).PubMedGoogle Scholar
  28. 28.
    G. Jackowski and E. Kun, The influence of triioodothyronine on polyadenosine diphosphoribose polymerase and RNA synthesis in cardiocyte nuclei, J. Mol. Cell. Cardiol. 198: 65 (1982).CrossRefGoogle Scholar
  29. 29.
    G. Jackowski, A. D. Romaschin and E. Kun, Age-dependent selective effects of hydrocortisone and aldosterone on the polyadenosine diphosphoribose metabolism of isolated cardiocyte nuclei Biochem. Internat. 4: 17 (1982).Google Scholar
  30. 30.
    G. Jackowski and E. Kun, Age-dependent variation of rates of polyadenosine diphosphoribose synthesis by cardiocyte nuclei and the lack of correlation of enzymatic activity with macromolecular size distribution of DNA, J. Biol. Chem. 256: 3667 (1981).PubMedGoogle Scholar
  31. 31.
    E. Kun, E. Kirsten, G. E. Milo, P. Kurian and H. L. Kumari, Cell cycle dependent intervention by benzamide of carcinogen-induced neoplastic transformation and in vitro poly ADP-ribosylation of nuclear proteins in human fibroblasts. Proc. Nat. Acad. Sci. USA 80:7219 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Borek, W. F. Morgan, A. Ong and J. E. Cleaver, Inhibition of malignant transformation in vitro by inhibitors of poly(ADP-ribose) synthesis, Proc. Nat. Acad. Svi. USA 81: 243 (1984).CrossRefGoogle Scholar
  33. 33.
    S. Takahashi, T. Ohnishi, A. Denda and T. Konishi, Enhancing effect of 3-aminobenzamide on induction of γ-glutamyl transpeptidase positive foci in rat liver, Chem. Biol. Interact. 39:363 (192).CrossRefGoogle Scholar
  34. 34.
    A. Tseng jr., W. M. Lee, E. Kirsten, A. Hakam, J. McLick, K. Buki and E. Kun, Prevention of tumorigenesis of oncogen-transformed rat fibroblasts with DNA site inhibitors of poly(ADP-ribose)polymerase, Proc. Nat. Acad. Sci. USA 84: 1107 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    A. J. Strain, Inhibitors of ADP-ribosyl transferase enhance the transformation of NIH 3T3 cells following transfection with SV40 DNA, Exper. Cell Res. 159: 531 (1985).CrossRefGoogle Scholar
  36. 36.
    M. J. Berridge and R.F. Irvine, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    G. E. Milo, P. Kurian, E. Kirsten and E. Kun, Inhibition of carcinogen-induced cellular transformation of human fibroblasts by drugs that interact with the poly(ADP-ribose) polymerase system: initial evidence for the development of transformation resistance, FEBS Lett. 179: 332 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    R. E. Lubet, J. T. McCarvill, D. L. Putnam, J. L. Schwartz and L. M. Schectman, Effect of 3-aminobenzamide on the induction of toxicity and transformation by ethyl methanesulfonate and methylcholanthrene in Balb/3T3 cells, Carcinogenesis 5: 459 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    U. Lonn and S. Lonn, Accumulation of 10-kilobase DNA replication intermediates in cells treated with 3-aminobenzamide, Proc. Nat. Acad. Sci. USA 82: 104 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    K. M. Milan and J. E. Cleaver, Inhibitors of poly(ADP-ribose) synthesis: effects on other metabolic processes, Science 223: 589 (1984).CrossRefGoogle Scholar
  41. 41.
    B. E. Weissman, P. J. Saxon, S. R. Pasquale, G. R. Geiser and E. J. Stanbridge, Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression, Science 236:175 (1987).PubMedCrossRefGoogle Scholar
  42. 42.
    G. Prelich, M. Kostura, D. R. Marshak, M. B. Mathews and B. Stillman, The cell cycle regulated proliferating cell nuclear antigen is required for SV40-DNA replication in vitro, Nature 326: 471 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    J. McLick, A. Hakam, P.I. Bauer, E. Kun, D. E. Zacharias and J. P. Glusker, Benzamide-DNA interactions; deductions from binding, enzyme kinetics and from X-ray structural analysis of a 9-ethyladenine-benzamide adduct. Biochjm. Biophys. Acta., in press (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Ernest Kun
    • 1
  1. 1.Department of Pharmacology and the Cardiovascular Research InstituteThe University of California, San FranciscoSan FranciscoUSA

Personalised recommendations