Skip to main content

Homology between the Catalytic Subunits of Protein Phosphatases 1 and 2A Deduced from the cDNA

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((NATO ASI F,volume 231))

Abstract

A wide variety of extracellular signals transmit information to the cell interior by activating transmembrane signalling systems that control the production of a relatively small number of chemical mediators or “second messengers”. These substances (cyclic AMP, cyclic GMP, diacylglycerol and calcium ions) each activate particular protein kinases allowing them to phosphorylate key regulatory proteins and so translate external signals into cellular responses1,2. However, the steady state level of phosphorylation of any protein depends on the activities of protein phosphatases, as well as protein kinases, raising two important questions. How many protein phosphatases are present in cells, and are they also controlled by “second messengers”?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cohen, The role of protein phosphorylation in the neural and hormonal control of cellular activity, Nature 296: 613–620 (1982)

    Article  PubMed  CAS  Google Scholar 

  2. P. Cohen, The role of protein phosphorylation in the hormonal control of enzyme activity, Eur.J.Biochem. 151: 439–448 (1985)

    Article  PubMed  CAS  Google Scholar 

  3. T.S. Ingebritsen, and P. Cohen, Protein phosphatases: properties and role in cellular regulation, Science 221: 331–338 (1983)

    Article  PubMed  CAS  Google Scholar 

  4. T.S. Ingebritsen, and P. Cohen, The protein phosphatases involved in cellular regulation. 1. Classification and substrate specifities. Eur.J.Biochem. 132: 255–261 (1983)

    Article  PubMed  CAS  Google Scholar 

  5. A.P. Bradford, and S.J. Yeaman, Mitochondrial protein kinases and phosphatases, in “Advances in Protein Phosphatases” III, 73–106 Eds. W. Merlevede and J. DiSalvo, Leuven University Press, Belgium (1986)

    Google Scholar 

  6. J.G. Foulkes, Phosphotyrosyl protein phosphatases, Curr.Top. Microbiol. Immunol. 107: 163–180 (1983)

    PubMed  CAS  Google Scholar 

  7. T.S. Ingebritsen, A.A. Stewart, and P. Cohen, The protein phosphatases involved in cellular regulation. 6. Measurement of type 1 and type 2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles, Eur.J.Biochem. 132: 297–307 (1983)

    Article  PubMed  CAS  Google Scholar 

  8. F.L. Huang, and W.H. Glinsmann, Separation and characterisation of two Phosphorylase phosphatase inhibitors from rabbit skeletal muscle, Eur.J.Biochem. 70: 419–426 (1976)

    Article  PubMed  CAS  Google Scholar 

  9. J.G. Foulkes, and P. Cohen, The hormonal control of glycogen metabolism: phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline, Eur.J.Biochem. 97: 251–256 (1979)

    Article  PubMed  CAS  Google Scholar 

  10. H.C. Hemmings, P. Greengard, H.Y.L. Tung, and P. Cohen, DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphtase-1, Nature 310: 503–505 (1984)

    Article  PubMed  CAS  Google Scholar 

  11. S.I. Walaas, D.W. Aswad, and P. Greengard, A dopamine — and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions, Nature 301: 69–71 (1983)

    Article  PubMed  CAS  Google Scholar 

  12. S. Alemany, and P. Cohen, Phosphorylase-a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1, FEBS Lett. 198: 194–202 (1986)

    Article  PubMed  CAS  Google Scholar 

  13. P. Stralfors, A. Hiraga, and P. Cohen, The protein phosphatases involved in cellular regulation: Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle, Eur.J.Biochem. 149: 295–303 (1985)

    Article  PubMed  CAS  Google Scholar 

  14. A. Hiraga, and P. Cohen, Phosphorylation of the glycogen binding subunit of protein phosphatase-1G by cyclic AMP dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle, Eur.J.Biochem. 161: 763–769

    Google Scholar 

  15. J. Kuret, H. Bell, and P. Cohen, Identification of high levels of protein phosphatase-1 in rat liver nuclei, FEBS Lett. 203: 197–202 (1986)

    Article  PubMed  CAS  Google Scholar 

  16. B.A. Hemmings, T.J. Resink, and P. Cohen, Reconstitution of a Mg-ATP dependent protein phosphatase and its activation through a phosphorylation mechanism, FEBS Lett. 15: 319–324 (1982)

    Article  Google Scholar 

  17. L.M. Bailou, D.L. Brautigan, and E.H. Fischer, Subunit structure and activation of an inactive Phosphorylase phosphatase, Biochemistry 22: 3393–3399 (1983)

    Article  Google Scholar 

  18. H.Y.L. Tung, and P. Cohen, Comparison of the native and reconstituted Mg-ATP dependent protein phosphatases from rabbit skeletal muscle, Eur.J.Biochem. 145: 57–64 (1984)

    Article  PubMed  CAS  Google Scholar 

  19. B.A. Hemmings, D. Yellowlees, J.C. Kernohan, and P. Cohen, Purification of glycogen synthase kinase-3 from rabbit skeletal muscle: co-purification with the activating factor (FA) of the Mg-ATP dependent protein phosphatase, Eur.J.Biochem. 119: 443–451 (1981)

    Article  PubMed  CAS  Google Scholar 

  20. J. Goris, G. Defreyn, and W. Merlevede, Resolution of the ATP-Mg-dependent Phosphorylase phosphatase from liver into a two protein component system, FEBS Lett. 99: 279–282 (1979)

    Article  PubMed  CAS  Google Scholar 

  21. C.F.B. Holmes, D.G. Campbell, F.B. Caudwell, A. Aitken, and P. Cohen, The protein phosphatases involved in celular regulation: primary structure of inhibitor-2 from rabbit skeletal muscle, Eur.J.Biochem. 115: 173–182 (1986)

    Article  Google Scholar 

  22. T.S. Ingebritsen, J.G. Foulkes, and P. Cohen, The protein phosphatases involved in cellular regulation: 2. Glycogen metabolism, Eur.J.Biochem. 132: 263–274 (1983)

    Article  PubMed  CAS  Google Scholar 

  23. H.Y.L. Tung, S. Alemany, and P. Cohen, The protein phosphatases involved in cellular regulation; purification, subunit structure and properties of protein phosphatases-2A0, 2A1 and 2A2 from rabbit skeletal muscle, Eur.J.Biochem. 148: 253–263 (1985)

    Article  PubMed  CAS  Google Scholar 

  24. E.Y.C. Lee, S.R. Silberman, M.K. Ganapathi, H. Paris, and S. Petrovic, Properties of rabbit skeletal muscle protein phosphatases, Cold.Spring.Harb.Conf.Cell.Prolif 8: 425–439 (1981)

    CAS  Google Scholar 

  25. H.Y.L. Tung, T.J. Resink, B.A. Hemmings, S. Shenolikar, and P. Cohen, The catalytic subunits of protein phosphatase-1 and protein phosphatase-2A are distinct gene products, Eur.J.Biochem. 138: 635–641 (1984)

    Article  PubMed  CAS  Google Scholar 

  26. H.Y.L. Tung, S. Pelech, M.J. Fisher, C.I. Pogson, and P. Cohen, The protein phosphatases involved in cellular regulation: influence of polyamines in the activities of protein phosphatase-1 and protein phosphatase-2A, Eur.J.Biochem. 149: 305–313 (1984)

    Article  Google Scholar 

  27. M. Speth, R. Alejandro, and E.Y.C. Lee, Monoclonal antibodies to rabbit skeletal muscle protein phosphtases CI and CII, J.Biol.Chem. 259: 3475–3481 (1984)

    PubMed  CAS  Google Scholar 

  28. R. Lathe, Synthetic oligonucleotide probes deduced from amino acid sequence data: theoretical and practical considerations, J.Mol.Biol. 183: 1–12 (1985)

    Article  PubMed  CAS  Google Scholar 

  29. Y. Takahashi, K. Kato, Y. Hayashizaki, T. Wakabayashi, E. Ohtsuka, S. Matsuki, M. Ikehara, and K. Matsubara, Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine, Proc.Natl.Acad.Sci. USA 82: 1931–1935 (1985)

    Article  PubMed  CAS  Google Scholar 

  30. E.F. da Cruz e Silva, and P.T.W. Cohen, Isolation and sequence analysis of a cDNA clone encoding the entire catalytic subunit of Phosphorylase kinase, FEBS Lett. 220: 36–42 (1987)

    Article  PubMed  Google Scholar 

  31. F. Sanger, S. Nicklen, and A.R. Coulson, DNA sequencing with chain terminating inhibitors, Proc. Natl, Acad. Sci. USA 74: 5463–5467 (1977)

    Article  CAS  Google Scholar 

  32. M. Kozak, Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAS, Nucleic Acids Res. 12: 857–872 (1984)

    Article  PubMed  CAS  Google Scholar 

  33. P.J. Parker, L. Coussens, N. Totty, L. Rhee, S. Young, E. Chen, S. Stabel, M.D. Waterfield, and A. Ullrich, The complete primary structure of protein kinase C — the major phorbol ester receptor, Science 233: 853–859 (1986)

    Article  PubMed  CAS  Google Scholar 

  34. J.M. Maraganore, Structural elements for protein phospholipid interactions may be shared in protein kinase C and phospholipases A«, Trends in Biochem.Genet. 12: 176–177 (1987)

    Article  CAS  Google Scholar 

  35. C.B. Newgard, K. Nakano, P.K. Hwang, and R.J. Fletterick, Sequence analysis of the cDNA encoding human liver glycogen Phosphorylase reveals tissue specific codon usage, Proc.Natl.Acad.Sci. USA, 83: 8132–8136 (1986)

    Article  PubMed  CAS  Google Scholar 

  36. E.M. Reimann, K. Titani, L.H. Ericsson, R.D. Wade, E.H. Fischer, and K.A. Walsh, Homology of the γ-subunit of phosphorylase-b kinase with cAMP-dependent protein kinase, Biochemistry 23: 4185–4192 (1984)

    Article  PubMed  CAS  Google Scholar 

  37. B.S. Hartley, and D.M. Shotten, Pancreatic elastase in “The Enzymes” III (3rd edition) Ed. P.D. Boyer, Academic Press, Orlando pp 323–373 (1971)

    Google Scholar 

  38. D.L. Brautigan, C.L. Shriner, and P.A. Gruppuso, Phosphorylase phosphatase catalytic subunit. Evidence that the Mr=33.500 enzyme fragment is derived from a native protein of Mr=70,000, J.Biol.Chem. 260: 4295–4302 (1985)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, P.T.W., Berndt, N., da Cruz e Silva, O., Campbell, D.G. (1988). Homology between the Catalytic Subunits of Protein Phosphatases 1 and 2A Deduced from the cDNA. In: Zappia, V., Galletti, P., Porta, R., Wold, F. (eds) Advances in Post-Translational Modifications of Proteins and Aging. Advances in Experimental Medicine and Biology, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9042-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9042-8_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9044-2

  • Online ISBN: 978-1-4684-9042-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics