Post-Translational Modifications of the Insulin Receptor

  • Celeste B. Hart
  • Jesse Roth
  • Maxine A. Lesniak
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


The full program for expression of insulin’s action is contained in a locus on the cell surface, the insulin receptor (1,2). During the last decade, a general scheme of the receptor’s structure has been developed (3–8). Recently, our concept of the receptor’s structure has been refined by data obtained from cloning the receptor and other techniques (9–14). The picture that has emerged is that the predominant form of the receptor on the cell surface is that of a disulfide-linked heterotetrameric glycoprotein consisting of two distinct subunits, alpha and beta. Studies employing photoaffinity labeling techniques, as well as studies in which insulin is bound to and then affinity crosslinked to the receptor have shown that the alpha subunit contains the ligand binding region and hence must have a significant extracellular domain. In support of this, analysis of the sequence derived from the recent cloning of the receptor predicts that the alpha subunit lacks a significant hydrophobic region, suggesting that the alpha subunit is entirely extracellular. The beta subunit has a short extracellular domain, a hydrophobic membrane spanning region and an intracytoplasmic domain (13,14). As detailed below, this intracytoplasmic domain contains a tyrosine specific protein kinase activity (15–18). Upon binding of insulin to its receptor this kinase is somehow activated. Data are accumulating to suggest that activation of this kinase initiates a cascade of events leading to insulin’s bioeffects. Thus the alpha and beta subunits of the insulin receptor subserve distinct but interdependent functions in the pathway leading from insulin binding to insulin action.


Insulin Receptor Tyrosine Kinase Activity Wheat Germ Agglutinin Beta Subunit Insulin Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Freychet, J. Roth, and D. M. Neville, Insulin receptors in the liver: specific binding of 125I-insuin to the plasma membrane and its relation to insulin bioactivity, Proc. Natl. Acad. Sci. USA 68:1833–1837 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    C. R. Kahn, K. L. Baird, J. S. Flier, C. Grunfeld, J. T. Harmon, L. C. Harrison, F. A. Karlsson, M. Kasuga, G. L. King, U. Lang, J. M. Podskalney, and E. Van Obberghen, Insulin receptor antibodies and the mechanism of insulin action, Rec. Progr. Horm. Res. 37:477–538 (1981).PubMedGoogle Scholar
  3. 3.
    P. Cuatrecasas, Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver, J. Biol. Chem. 248:3528–3534 (1973).PubMedGoogle Scholar
  4. 4.
    J. Massague, P. Pilch, and M. P. Czech, Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichio-metries. Proc. Natl. Acad. Sci. USA 77:7137–7141 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Massague, P. Pilch, and M. P. Czech, A unique proteolytic cleavage site on the B-subunit of the insulin receptor. J. Biol. Chem. 256:3182–3190 (1981).PubMedGoogle Scholar
  6. 6.
    J. A. Hedo, M. Kasuga, E. Van Obberghen, J. Roth, and C. R. Kahn, Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic labeling: evidence for heterogeneity, Proc. Natl. Acad. Sci. USA 78:4791–4795 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    P. F. Pilch, and M. P. Czech, Interaction of cross-linking agents with the insulin effector systems of isolated fat cells, J. Biol. Chem. 254:3375–3381 (1979).PubMedGoogle Scholar
  8. 8.
    C. C. Yip, C. W. T. Yeung, M. L. Moule, Photoaffinity labeling of insulin receptor proteins of liver plasma membrane proteins, Biochemistry 19:70–76 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Kasuga, J. A. Hedo, K. M. Yamada, and C. R. Kahn, The structure of the insulin receptor and its subunits: evidence for multiple non-reduced forms and a 210K possible proreceptor, J. Biol. Chem. 257:10392–10399 (1982).PubMedGoogle Scholar
  10. 10.
    Y. Fujita-Yamaguchi, S. Choi, Y. Sakamoto, and K. Itakura, Purification of the insulin receptor with full binding activity, J. Biol. Chem. 258:5045–5049 (1983).PubMedGoogle Scholar
  11. 11.
    S. Jacobs, E. Hazum, and P. Cuatrecasas, Digestion of insulin receptors with proteolytic and glycosidic enzymes — effects on purified and membrane-associated receptor subunits, Biochem. Biophys. Res. Commun. 94:1066–1073 (1980).CrossRefGoogle Scholar
  12. 12.
    V. L. Herzberg, F. Grigorescu, A. S. B. Edge, R. Spiro, and C. R. Kahn, Characterization of insulin receptor carbohydrate by comparison of chemical and enzymatic deglycosylation, Biochem. Biophys. Res. Commun. 129:789–795 (1985).CrossRefGoogle Scholar
  13. 13.
    A. Ullrich, J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzelli, T. J. Dull, A. Gray, L. Coussens, Y.-C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature 313:756–761 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Ebina, L. Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J.-H. Ou, F. Marsiarz, Y. Kan, I. D. Goldfine, R. A. Roth, and W. J. Rutter, The human insulin receptor cDNA: the structural basis for hormone activated transmembrane signalling. Cell 40:747–758 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Kasuga, F. A. Karlsson, and C. R. Kahn, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science 215:185–187 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    R. A. Roth, and D. J. Cassell, Insulin receptor: evidence that it is a protein kinase, Science 219:299–301 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    M. A. Shia, and P. Pilch, The β-subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry 22:717–723 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Petruzelli, R. Herrera, and O. M. Rosen, Insulin receptor is an insulin dependent tyrosine protein kinase: copurification of insulin binding and protein kinase activity to homogeneity from human placenta. Proc. Natl. Acad. Sci. USA 81:3327–3331 (1984).CrossRefGoogle Scholar
  19. 19.
    J. A. Hedo, and P. Gorden, Biosynthesis of the insulin receptor, Horm. Metabol. Res. 17:487–490 (1985).CrossRefGoogle Scholar
  20. 20.
    J. A. Hedo, E. Collier, and A. Watkinson, Myristyl and palmityl acyla-tion of the insulin receptor, J. Biol. Chem. 262:954–957 (1987).PubMedGoogle Scholar
  21. 21.
    M. K. Kamps, J. E. Buss, and B. M. Sefton, Rous sarcoma virus transforming protein lacking myristic acid phosphorylates known polypeptide substrates without inducing transformation, Cell 45:105–112 (1985).CrossRefGoogle Scholar
  22. 22.
    A. I. Magee, and M. J. Schlesinger, Fatty acid acylation of eucaryotic cell membrane proteins, Biochim. Biophys. Acta 694:279–289 (1982).CrossRefGoogle Scholar
  23. 23.
    J. A. Hedo, C. R. Kahn, M. Hayashi, K. M. Yamada, and M. Kasuga, Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunits, J. Biol. Chem. 258:10020–10026 (1983).PubMedGoogle Scholar
  24. 24.
    J. A. Hedo, and I. A. Simpson, Biosynthesis of the insulin receptor in rat adipose cells, intracellular processing of the Mr-190,000 pro-receptor, Biochem. J. 232:71–78 (1985).Google Scholar
  25. 25.
    J. Forsayeth, B. Maddux, and I. D. Goldfine, Biosynthesis and processing of the human insulin receptor, Diabetes 35:837–846 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    G. V. Ronnett, V. P. Knutsen, R. A. Kohanski, T. L. Simpson, and M. D. Lane, Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3–L1 adipocytes, J. Biol. Chem. 259:4566–4575 (1984).PubMedGoogle Scholar
  27. 27.
    S. Jacobs, F. C. Kull, and P. Cuatrecasas, Monensin blocks the maturation of receptors for insulin and somatomedin C.: identification of receptor precursors, Proc. Natl. Acad. Sci. USA 80:1228–1231 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    V. Duronio, S. Jacobs, and P. Cuatrecasas, Complete glycosylation of the insulin and insulin-like growth factor I receptors is not necessary for their biosynthesis and function. Use of swainsonine as an inhibitor in IM-9 cells, J. Biol. Chem. 261:970–975 (1986).PubMedGoogle Scholar
  29. 29.
    H. Schachter, Glycoproteins: their structure, biosynthesis and possible clinical implications, Clin. Biochem. 17:3–14 (1983).CrossRefGoogle Scholar
  30. 30.
    N. Sharon, Progress in glycoprotein research, Trends Biochem. Sci. 9:198–202 (1984).CrossRefGoogle Scholar
  31. 31.
    R. W. Rees-Jones, J. A. Hedo, Y. Zick, and J. Roth, Insulin stimulated phosphorylation of the insulin receptor precursor, Biochem. Biophys. Res. Commun. 116–417–422 (1983).Google Scholar
  32. 32.
    M. Muggeo, P. DeMeyts, and J. Roth, The insulin receptor of vertebrates is functionally more conserved during evolution than the hormone itself, Endocrinology 104 :1393–1402 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    W. Kemmler, R. Renner, A. Zynamon, and K. D. Hepp, Interactions between insulins and liver membrane receptors of guinea pig, calf and chicken. Exclusion of a species specific insulin receptor. Biochim. Biophys. Acta, 543:349–356 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    C. C. Yip, M. L. Moule, and C. W. T. Yeung, Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling, Biochem. Biophys. Res. Commun. 96:1671–1678 (1981).CrossRefGoogle Scholar
  35. 35.
    K. A. Heidenreich, N. R. Zahnheiser, P. Berhanu, D. Brandenberg, and J. Olefsky, Structural differences between insulin receptors in the brain and peripheral target tissues, J. Biol. Chem. 258:8527–8530 (1983).PubMedGoogle Scholar
  36. 36.
    S. A. Hendricks, C-D. Agardh, S. I. Taylor, and J. Roth, Unique features of the insulin receptor of rat brain, J. Neurochem. 43:1302–1309 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Sheraer, and D. LeRoith, The interaction of brain insulin receptors with wheat germ agglutinin, Neuropeptides 9:1–8 (1987).CrossRefGoogle Scholar
  38. 38.
    T. Ciaraldi, R. Robbins, J. W. Leidy, P. Thamm, and P. Berhanu, Insulin receptors on cultures hypothalamic cells: functional and structural differences from receptors on peripheral target cells, Endocrinology 116:2179–2185 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    K. A. Heidenreich, and D. Brandenburg, Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosylation of insulin receptors in adipocytes and brain, Endocrinology 118:1835–1842 (1986).PubMedCrossRefGoogle Scholar
  40. 40.
    L. Bassas, F. de Pablo, M. A. Lesniak, and J. Roth, The insulin receptors of chick embryo show tissue specific structural differences which parallel those of the insulin-like growth factor I receptors, Endocrinology (in press).Google Scholar
  41. 41.
    J. Simon, and D. LeRoith, Insulin receptors of chicken liver and brain: characterization of alpha and beta subunit properties, Eur. J. Biochem. 158:125–132 (1986).PubMedCrossRefGoogle Scholar
  42. 42.
    J. Shemer, J. Penhos, and D. LeRoith, Insulin receptors in lizard brain and liver: structural and functional studies of the alpha and beta subunits demonstrate evolutionary conservation. Diabetologia 29:321–329 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    C. Hart, J. Shemer, J. C. Penhos, M. A. Lesniak, J. Roth, and D. LeRoith, Frog brain and liver show evolutionary conservation of tissue specific differences among insulin receptors, Gen. and Comp. Endocrin. (in press).Google Scholar
  44. 44.
    W. Lowe, and D. LeRoith, Insulin receptors from guinea pig liver and brain: structural and functional studies, Endocrinology 118:1669–1677 (1986).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Gammeltoft, M. Fehlmann, and E. Van Obberghen, Insulin receptors in the mammalian central nervous system: binding characteristics and subunit structure. Biochimie 67:1147–1153 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    W. L. Lowe, F. T. Boyd, D. W. Clarke, M. K. Raizada, C. Hart, and D. LeRoith, Development of brain insulin receptors: structural and functional studies of insulin receptors from whole brain and primary cell cultures, Endocrinology 119:25–35 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    R. J. Comi, G. Grunberger, and P. Gorden, Relationship of insulin binding and insulin-stimulated tyrosine kinase activity is altered in type II diabetes, J. Clin. Invest. 79:453–462 (1987).PubMedCrossRefGoogle Scholar
  48. 48.
    F. Wold, Fatty acylation of proteins (Keep fit with fat?), Trends Biochem. Sci. 11:58–59 (1986).CrossRefGoogle Scholar
  49. 49.
    E. Van Obberghen, B. Rossi, A. Kowalski, H. Gazzano, and G. Ponzio, Receptor-mediated phosphorylation of the hepatic insulin receptor: evidence that the Mr 95,000 receptor subunit is its own kinase, Proc. Natl. Acad. Sci. USA 80:945–949 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Zick, J. Whittaker, and J. Roth, Insulin stimulated phosphorylation of its own receptor. Activation of a tyrosine-specific protein kinase that is tightly associated with the receptor, J. Biol. Chem. 258:3431–3434 (1983).PubMedGoogle Scholar
  51. 51.
    M. Kasuga, Y. Fujita-Yamaguchi, D. L. Blithe, M. F. White, and C. R. Kahn, Characterization of the insulin receptor kinase purified from human placental membranes, J. Biol. Chem. 258:10973–10980 (1983).PubMedGoogle Scholar
  52. 52.
    R. A. Nemenoff, Y. C. Kwok, G. I. Shulman, P. J. Blackshear, R. Osathamondh, and J. Avruch, Insulin-stimulated tyrosine protein kinase. Characterization and relation to the insulin receptor. J. Biol. Chem. 259:5058–5065 (1984).PubMedGoogle Scholar
  53. 53.
    C. F. Burant, M. K. Teutelaar, G. E. Landreth, and M. G. Buse, Phosphorylation of insulin receptors solubilized from rat skeletal muscle, Diabetes 33:704–708 (1984).PubMedCrossRefGoogle Scholar
  54. 54.
    M. R. Hammerman, and J. R. Gavin III, Insulin stimulated phosphorylation and insulin binding in canine renal basolateral membranes, Am. J. Physiol. 247:F408-F417 (1984).PubMedGoogle Scholar
  55. 55.
    L. Petruzelli, R. Herrera, R. Garcia-Arenas, and O. Rosen, Acquisition of insulin-dependent tyrosine kinase activity during Drosophila embryo-genesis, J. Biol. Chem. 260:16072–16075 (1985).Google Scholar
  56. 56.
    R. W. Rees-Jones, M. Quarum, S. A. Hendricks, and J. Roth, The insulin receptor of rat brain is coupled to tyrosine kinase activity, J. Biol. Chem. 259:3470–3474 (1984).PubMedGoogle Scholar
  57. 57.
    T. Hunter, and J. A. Cooper, Protein-tyrosine kinases, Annu. Rev. Bio-chem. 54:897–930 (1985).Google Scholar
  58. 58.
    E. G. Krebs, Historical perspective on protein phosphorylation and a classification system for protein kinases, Phil. Trans. R. Soc. Lond. 303:3–11 (1983).Google Scholar
  59. 59.
    M. A. Shia, J. B. Rubin, and P. F. Pilch, The insulin receptor protein kinase. Physicochemical requirements for activity, J. Biol. Chem. 258:14450–14455 (1983).PubMedGoogle Scholar
  60. 60.
    M. F. White, H. U. Häring, M. Kasuga, and C. R. Kahn, Kinetic properties and sites of autophosphorylation of the partially purified insulin receptor from hepatoma cells, J. Biol. Chem. 259:255–264 (1984).PubMedGoogle Scholar
  61. 61.
    Y. Zick, R. W. Rees-Jones, and J. Roth, Insulin-induced phosphorylation of the insulin receptor: a very early event at the target cell, in “Proceeding of the 11th Congress of the International Diabetes Federation,” Excerpta Medica, Amsterdam (1983), pp. 161–170.Google Scholar
  62. 62.
    Y. Zick, M. Kasuga, C. R. Kahn, and J. Roth, Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell free system, J. Biol. Chem. 258:75–80 (1983).PubMedGoogle Scholar
  63. 63.
    D. T. Pang, B. R. Sharma, J. A. Shafer, M. F. White, and C. R. Kahn, Predominance of tyrosine phosphorylation of insulin receptors during the initial response of intact cells to insulin, J. Biol. Chem. 260:7131–7136 (1985).PubMedGoogle Scholar
  64. 64.
    H. H. Klein, G. R. Freidenberg, M. Kladde, and J. M. Olefsky, Insulin activation of insulin receptor tyrosine kinase activity in intact rat adipocytes: an in vitro system to measure histone kinase activity of insulin receptors activated in vitro, J. Biol. Chem. 261:4691–4697 (1986).PubMedGoogle Scholar
  65. 65.
    O. M. Rosen, R. Herrera, Y. Oluwe, L. Petruzelli, and M. H. Cobb, Phosphorylation activates the insulin receptor tyrosine kinase, Proc. Natl. Acad. Sci. USA 80:3237–3240 (1983).PubMedCrossRefGoogle Scholar
  66. 66.
    K.-T. Yu, and M. P. Czech, Tyrosine phosphorylation of the insulin receptor subunit activates the receptor-associated tyrosine kinase activity. J. Biol. Chem. 259:5277–5286 (1984).PubMedGoogle Scholar
  67. 67.
    M. Kasuga, Y. Fujita-Yamaguchi, D. L. Blithe, M. F. White, and C. R. Kahn, Characterization of the insulin receptor kinase purified from human placental membranes, J. Biol. Chem. 258:10973–10980 (1983).PubMedGoogle Scholar
  68. 68.
    L. A. Stadtmauer, and O. M. Rosen, Phosphorylation of exogenous substrates by the insulin receptor-associated protein kinase, J. Biol. Chem. 258:6682–6685 (1983).PubMedGoogle Scholar
  69. 69.
    E. M. Sale, M. F. White, and C. R. Kahn, Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase, J. Cellular Biochem. 29:15–26 (1986).Google Scholar
  70. 70.
    Y. Zick, G. Grunberger, R. W. Rees-Jones, and R. J. Comi, Use of tyrosine containing polymers to characterize the substrate specificity of insulin and other hormone-stimulated tyrosine kinases, Eur. J. Biochem. 148:177–182 (1985).PubMedCrossRefGoogle Scholar
  71. 71.
    S. Braun, W. E. Raymond, and E. Rucker, Synthetic tyrosine polymers as substrates and inhibitors of tyrosine-specific protein kinases, J. Biol. Chem. 259:2051–2054 (1984).PubMedGoogle Scholar
  72. 72.
    M. F. White, S. Takayama, and C. R. Kahn, Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro, J. Biol. Chem. 260:9470–9478 (1985).PubMedGoogle Scholar
  73. 73.
    J. Shemer, N. Perrotti, J. Roth, and D. LeRoith, Characterization of an endogenous substrate related to insulin and insulin growth factor I receptor in lizard brain, J. Biol. Chem. 262:3434–3439 (1987).Google Scholar
  74. 74.
    R. W. Rees-Jones, and S. I. Taylor, An endogenous substrate for the insulin receptor-associated tyrosine kinase, J. Biol. Chem. 260:4461–4467 (1985).PubMedGoogle Scholar
  75. 75.
    M. F. White, E. W. Stegmann, T. J. Dull, A. Ullrich, and C. R. Kahn, Characterization of an endogenous substrate of the insulin receptor in cultured cells, J. Biol. Chem. 262:9769–9777 (1987).PubMedGoogle Scholar
  76. 76.
    M. Bernier, D. M. Laird, and M. D. Lane, Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes, Proc. Natl. Acad. Sci. USA 84:1844–1848 (1987).PubMedCrossRefGoogle Scholar
  77. 77.
    H. U. Häring, M. F. White, F. Machico, B. Ermel, E. Schleicher, and B. Obermeir, Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells, Proc. Natl. Acad. Sci. USA 84:113–117 (1987).PubMedCrossRefGoogle Scholar
  78. 78.
    D. O. Morgan, L. Ho, L. J. Korn, and R. A. Roth, Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase, Proc. Natl. Acad. Sci. USA 83:328–332 (1986).PubMedCrossRefGoogle Scholar
  79. 79.
    C. K. Chou, T. J. Dull, D. S. Russell, R. Gherzi, D. Lebwohl, A. Ullrich, and O. M. Rose, Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin, J. Biol. Chem. 262:1842–1847 (1987).PubMedGoogle Scholar
  80. 80.
    Y. Ebina, E. Araki, M. Taira, F. Shimada, M. Mori, C. C. Craik, K. Siddle, S. B. Pierce, R. A. Roth, and W. J. Rutter, Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity, Proc. Natl. Acad. Sci. USA 84:704–708 (1987).PubMedCrossRefGoogle Scholar
  81. 81.
    I. A. Simpson, and J. Hedo, Insulin receptor phosphorylation may not be a prerequisite for acute insulin action, Science 223:1301–1304 (1984).PubMedCrossRefGoogle Scholar
  82. 82.
    Y. Zick, R. W. Rees-Jones, S. I. Taylor, P. Gorden, and J. Roth, The role of antireceptor antibodies in stimulating phosphorylation of the insulin receptor, J. Biol. Chem. 259:4396–4400 (1984).PubMedGoogle Scholar
  83. 83.
    J. R. Forsayeth, J. F. Caro, M. K. Sinka, B. A. Maddux, and I. D. Goldfine, Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity, Proc. Natl. Acad. Sci. USA 84:3448–3451 (1987).PubMedCrossRefGoogle Scholar
  84. 84.
    M. Okamoto, M. F. White, R. Maron, and C. R. Kahn, Autophosphorylation and kinase activity of insulin receptor in diabetic rats, Am. J. Physiol. 251 (Endocrinol. Metab.):E542-E550 (1986).PubMedGoogle Scholar
  85. 85.
    J. M. Amatruda, and A. M. Roncone, Normal hepatic insulin receptor autophosphorylation in non-ketotic diabetes mellitus, Biochem. Biophys. Res. Commun. 129:163–170 (1985).CrossRefGoogle Scholar
  86. 86.
    G. Grunberger, Y. Zick, and P. Gorden, Defect in phosphorylation of insulin receptors in cells from an insulin resistant patient with normal insulin binding, Science 223:932–934 (1984).PubMedCrossRefGoogle Scholar
  87. 87.
    F. Grigorescu, J. S. Flier, and C. R. Kahn, Defect in receptor phosphorylation in erythrocytes and fibroblasts associated with severe insulin resistance, J. Biol. Chem. 259:15003–15006 (1984).PubMedGoogle Scholar
  88. 88.
    R. J. Comi, G. Grunberger, and P. Gorden, Relationship of insulin binding and insulin stimulated tyrosine kinase activity is altered in type II diabetes, J. Clin. Invest. 79:453–462 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Celeste B. Hart
    • 1
  • Jesse Roth
    • 1
  • Maxine A. Lesniak
    • 1
  1. 1.Diabetes Branch, NIDDKNIHBethesdaUSA

Personalised recommendations