Skip to main content

Post-Translational Modifications of the Insulin Receptor

  • Chapter
  • 269 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((NATO ASI F,volume 231))

Abstract

The full program for expression of insulin’s action is contained in a locus on the cell surface, the insulin receptor (1,2). During the last decade, a general scheme of the receptor’s structure has been developed (3–8). Recently, our concept of the receptor’s structure has been refined by data obtained from cloning the receptor and other techniques (9–14). The picture that has emerged is that the predominant form of the receptor on the cell surface is that of a disulfide-linked heterotetrameric glycoprotein consisting of two distinct subunits, alpha and beta. Studies employing photoaffinity labeling techniques, as well as studies in which insulin is bound to and then affinity crosslinked to the receptor have shown that the alpha subunit contains the ligand binding region and hence must have a significant extracellular domain. In support of this, analysis of the sequence derived from the recent cloning of the receptor predicts that the alpha subunit lacks a significant hydrophobic region, suggesting that the alpha subunit is entirely extracellular. The beta subunit has a short extracellular domain, a hydrophobic membrane spanning region and an intracytoplasmic domain (13,14). As detailed below, this intracytoplasmic domain contains a tyrosine specific protein kinase activity (15–18). Upon binding of insulin to its receptor this kinase is somehow activated. Data are accumulating to suggest that activation of this kinase initiates a cascade of events leading to insulin’s bioeffects. Thus the alpha and beta subunits of the insulin receptor subserve distinct but interdependent functions in the pathway leading from insulin binding to insulin action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Freychet, J. Roth, and D. M. Neville, Insulin receptors in the liver: specific binding of 125I-insuin to the plasma membrane and its relation to insulin bioactivity, Proc. Natl. Acad. Sci. USA 68:1833–1837 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. C. R. Kahn, K. L. Baird, J. S. Flier, C. Grunfeld, J. T. Harmon, L. C. Harrison, F. A. Karlsson, M. Kasuga, G. L. King, U. Lang, J. M. Podskalney, and E. Van Obberghen, Insulin receptor antibodies and the mechanism of insulin action, Rec. Progr. Horm. Res. 37:477–538 (1981).

    PubMed  CAS  Google Scholar 

  3. P. Cuatrecasas, Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver, J. Biol. Chem. 248:3528–3534 (1973).

    PubMed  CAS  Google Scholar 

  4. J. Massague, P. Pilch, and M. P. Czech, Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichio-metries. Proc. Natl. Acad. Sci. USA 77:7137–7141 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. J. Massague, P. Pilch, and M. P. Czech, A unique proteolytic cleavage site on the B-subunit of the insulin receptor. J. Biol. Chem. 256:3182–3190 (1981).

    PubMed  CAS  Google Scholar 

  6. J. A. Hedo, M. Kasuga, E. Van Obberghen, J. Roth, and C. R. Kahn, Direct demonstration of glycosylation of insulin receptor subunits by biosynthetic labeling: evidence for heterogeneity, Proc. Natl. Acad. Sci. USA 78:4791–4795 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. P. F. Pilch, and M. P. Czech, Interaction of cross-linking agents with the insulin effector systems of isolated fat cells, J. Biol. Chem. 254:3375–3381 (1979).

    PubMed  CAS  Google Scholar 

  8. C. C. Yip, C. W. T. Yeung, M. L. Moule, Photoaffinity labeling of insulin receptor proteins of liver plasma membrane proteins, Biochemistry 19:70–76 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. M. Kasuga, J. A. Hedo, K. M. Yamada, and C. R. Kahn, The structure of the insulin receptor and its subunits: evidence for multiple non-reduced forms and a 210K possible proreceptor, J. Biol. Chem. 257:10392–10399 (1982).

    PubMed  CAS  Google Scholar 

  10. Y. Fujita-Yamaguchi, S. Choi, Y. Sakamoto, and K. Itakura, Purification of the insulin receptor with full binding activity, J. Biol. Chem. 258:5045–5049 (1983).

    PubMed  CAS  Google Scholar 

  11. S. Jacobs, E. Hazum, and P. Cuatrecasas, Digestion of insulin receptors with proteolytic and glycosidic enzymes — effects on purified and membrane-associated receptor subunits, Biochem. Biophys. Res. Commun. 94:1066–1073 (1980).

    Article  CAS  Google Scholar 

  12. V. L. Herzberg, F. Grigorescu, A. S. B. Edge, R. Spiro, and C. R. Kahn, Characterization of insulin receptor carbohydrate by comparison of chemical and enzymatic deglycosylation, Biochem. Biophys. Res. Commun. 129:789–795 (1985).

    Article  CAS  Google Scholar 

  13. A. Ullrich, J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzelli, T. J. Dull, A. Gray, L. Coussens, Y.-C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature 313:756–761 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. Y. Ebina, L. Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J.-H. Ou, F. Marsiarz, Y. Kan, I. D. Goldfine, R. A. Roth, and W. J. Rutter, The human insulin receptor cDNA: the structural basis for hormone activated transmembrane signalling. Cell 40:747–758 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. M. Kasuga, F. A. Karlsson, and C. R. Kahn, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science 215:185–187 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. R. A. Roth, and D. J. Cassell, Insulin receptor: evidence that it is a protein kinase, Science 219:299–301 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. M. A. Shia, and P. Pilch, The β-subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry 22:717–723 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. L. Petruzelli, R. Herrera, and O. M. Rosen, Insulin receptor is an insulin dependent tyrosine protein kinase: copurification of insulin binding and protein kinase activity to homogeneity from human placenta. Proc. Natl. Acad. Sci. USA 81:3327–3331 (1984).

    Article  Google Scholar 

  19. J. A. Hedo, and P. Gorden, Biosynthesis of the insulin receptor, Horm. Metabol. Res. 17:487–490 (1985).

    Article  CAS  Google Scholar 

  20. J. A. Hedo, E. Collier, and A. Watkinson, Myristyl and palmityl acyla-tion of the insulin receptor, J. Biol. Chem. 262:954–957 (1987).

    PubMed  CAS  Google Scholar 

  21. M. K. Kamps, J. E. Buss, and B. M. Sefton, Rous sarcoma virus transforming protein lacking myristic acid phosphorylates known polypeptide substrates without inducing transformation, Cell 45:105–112 (1985).

    Article  Google Scholar 

  22. A. I. Magee, and M. J. Schlesinger, Fatty acid acylation of eucaryotic cell membrane proteins, Biochim. Biophys. Acta 694:279–289 (1982).

    Article  CAS  Google Scholar 

  23. J. A. Hedo, C. R. Kahn, M. Hayashi, K. M. Yamada, and M. Kasuga, Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunits, J. Biol. Chem. 258:10020–10026 (1983).

    PubMed  CAS  Google Scholar 

  24. J. A. Hedo, and I. A. Simpson, Biosynthesis of the insulin receptor in rat adipose cells, intracellular processing of the Mr-190,000 pro-receptor, Biochem. J. 232:71–78 (1985).

    CAS  Google Scholar 

  25. J. Forsayeth, B. Maddux, and I. D. Goldfine, Biosynthesis and processing of the human insulin receptor, Diabetes 35:837–846 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. G. V. Ronnett, V. P. Knutsen, R. A. Kohanski, T. L. Simpson, and M. D. Lane, Role of glycosylation in the processing of newly translated insulin proreceptor in 3T3–L1 adipocytes, J. Biol. Chem. 259:4566–4575 (1984).

    PubMed  CAS  Google Scholar 

  27. S. Jacobs, F. C. Kull, and P. Cuatrecasas, Monensin blocks the maturation of receptors for insulin and somatomedin C.: identification of receptor precursors, Proc. Natl. Acad. Sci. USA 80:1228–1231 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. V. Duronio, S. Jacobs, and P. Cuatrecasas, Complete glycosylation of the insulin and insulin-like growth factor I receptors is not necessary for their biosynthesis and function. Use of swainsonine as an inhibitor in IM-9 cells, J. Biol. Chem. 261:970–975 (1986).

    PubMed  CAS  Google Scholar 

  29. H. Schachter, Glycoproteins: their structure, biosynthesis and possible clinical implications, Clin. Biochem. 17:3–14 (1983).

    Article  Google Scholar 

  30. N. Sharon, Progress in glycoprotein research, Trends Biochem. Sci. 9:198–202 (1984).

    Article  Google Scholar 

  31. R. W. Rees-Jones, J. A. Hedo, Y. Zick, and J. Roth, Insulin stimulated phosphorylation of the insulin receptor precursor, Biochem. Biophys. Res. Commun. 116–417–422 (1983).

    Google Scholar 

  32. M. Muggeo, P. DeMeyts, and J. Roth, The insulin receptor of vertebrates is functionally more conserved during evolution than the hormone itself, Endocrinology 104 :1393–1402 (1979).

    Article  PubMed  CAS  Google Scholar 

  33. W. Kemmler, R. Renner, A. Zynamon, and K. D. Hepp, Interactions between insulins and liver membrane receptors of guinea pig, calf and chicken. Exclusion of a species specific insulin receptor. Biochim. Biophys. Acta, 543:349–356 (1978).

    Article  PubMed  CAS  Google Scholar 

  34. C. C. Yip, M. L. Moule, and C. W. T. Yeung, Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling, Biochem. Biophys. Res. Commun. 96:1671–1678 (1981).

    Article  Google Scholar 

  35. K. A. Heidenreich, N. R. Zahnheiser, P. Berhanu, D. Brandenberg, and J. Olefsky, Structural differences between insulin receptors in the brain and peripheral target tissues, J. Biol. Chem. 258:8527–8530 (1983).

    PubMed  CAS  Google Scholar 

  36. S. A. Hendricks, C-D. Agardh, S. I. Taylor, and J. Roth, Unique features of the insulin receptor of rat brain, J. Neurochem. 43:1302–1309 (1984).

    Article  PubMed  CAS  Google Scholar 

  37. J. Sheraer, and D. LeRoith, The interaction of brain insulin receptors with wheat germ agglutinin, Neuropeptides 9:1–8 (1987).

    Article  Google Scholar 

  38. T. Ciaraldi, R. Robbins, J. W. Leidy, P. Thamm, and P. Berhanu, Insulin receptors on cultures hypothalamic cells: functional and structural differences from receptors on peripheral target cells, Endocrinology 116:2179–2185 (1985).

    Article  PubMed  CAS  Google Scholar 

  39. K. A. Heidenreich, and D. Brandenburg, Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosylation of insulin receptors in adipocytes and brain, Endocrinology 118:1835–1842 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. L. Bassas, F. de Pablo, M. A. Lesniak, and J. Roth, The insulin receptors of chick embryo show tissue specific structural differences which parallel those of the insulin-like growth factor I receptors, Endocrinology (in press).

    Google Scholar 

  41. J. Simon, and D. LeRoith, Insulin receptors of chicken liver and brain: characterization of alpha and beta subunit properties, Eur. J. Biochem. 158:125–132 (1986).

    Article  PubMed  CAS  Google Scholar 

  42. J. Shemer, J. Penhos, and D. LeRoith, Insulin receptors in lizard brain and liver: structural and functional studies of the alpha and beta subunits demonstrate evolutionary conservation. Diabetologia 29:321–329 (1986).

    Article  PubMed  CAS  Google Scholar 

  43. C. Hart, J. Shemer, J. C. Penhos, M. A. Lesniak, J. Roth, and D. LeRoith, Frog brain and liver show evolutionary conservation of tissue specific differences among insulin receptors, Gen. and Comp. Endocrin. (in press).

    Google Scholar 

  44. W. Lowe, and D. LeRoith, Insulin receptors from guinea pig liver and brain: structural and functional studies, Endocrinology 118:1669–1677 (1986).

    Article  PubMed  CAS  Google Scholar 

  45. S. Gammeltoft, M. Fehlmann, and E. Van Obberghen, Insulin receptors in the mammalian central nervous system: binding characteristics and subunit structure. Biochimie 67:1147–1153 (1985).

    Article  PubMed  CAS  Google Scholar 

  46. W. L. Lowe, F. T. Boyd, D. W. Clarke, M. K. Raizada, C. Hart, and D. LeRoith, Development of brain insulin receptors: structural and functional studies of insulin receptors from whole brain and primary cell cultures, Endocrinology 119:25–35 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. R. J. Comi, G. Grunberger, and P. Gorden, Relationship of insulin binding and insulin-stimulated tyrosine kinase activity is altered in type II diabetes, J. Clin. Invest. 79:453–462 (1987).

    Article  PubMed  CAS  Google Scholar 

  48. F. Wold, Fatty acylation of proteins (Keep fit with fat?), Trends Biochem. Sci. 11:58–59 (1986).

    Article  Google Scholar 

  49. E. Van Obberghen, B. Rossi, A. Kowalski, H. Gazzano, and G. Ponzio, Receptor-mediated phosphorylation of the hepatic insulin receptor: evidence that the Mr 95,000 receptor subunit is its own kinase, Proc. Natl. Acad. Sci. USA 80:945–949 (1983).

    Article  PubMed  Google Scholar 

  50. Y. Zick, J. Whittaker, and J. Roth, Insulin stimulated phosphorylation of its own receptor. Activation of a tyrosine-specific protein kinase that is tightly associated with the receptor, J. Biol. Chem. 258:3431–3434 (1983).

    PubMed  CAS  Google Scholar 

  51. M. Kasuga, Y. Fujita-Yamaguchi, D. L. Blithe, M. F. White, and C. R. Kahn, Characterization of the insulin receptor kinase purified from human placental membranes, J. Biol. Chem. 258:10973–10980 (1983).

    PubMed  CAS  Google Scholar 

  52. R. A. Nemenoff, Y. C. Kwok, G. I. Shulman, P. J. Blackshear, R. Osathamondh, and J. Avruch, Insulin-stimulated tyrosine protein kinase. Characterization and relation to the insulin receptor. J. Biol. Chem. 259:5058–5065 (1984).

    PubMed  CAS  Google Scholar 

  53. C. F. Burant, M. K. Teutelaar, G. E. Landreth, and M. G. Buse, Phosphorylation of insulin receptors solubilized from rat skeletal muscle, Diabetes 33:704–708 (1984).

    Article  PubMed  CAS  Google Scholar 

  54. M. R. Hammerman, and J. R. Gavin III, Insulin stimulated phosphorylation and insulin binding in canine renal basolateral membranes, Am. J. Physiol. 247:F408-F417 (1984).

    PubMed  CAS  Google Scholar 

  55. L. Petruzelli, R. Herrera, R. Garcia-Arenas, and O. Rosen, Acquisition of insulin-dependent tyrosine kinase activity during Drosophila embryo-genesis, J. Biol. Chem. 260:16072–16075 (1985).

    Google Scholar 

  56. R. W. Rees-Jones, M. Quarum, S. A. Hendricks, and J. Roth, The insulin receptor of rat brain is coupled to tyrosine kinase activity, J. Biol. Chem. 259:3470–3474 (1984).

    PubMed  CAS  Google Scholar 

  57. T. Hunter, and J. A. Cooper, Protein-tyrosine kinases, Annu. Rev. Bio-chem. 54:897–930 (1985).

    CAS  Google Scholar 

  58. E. G. Krebs, Historical perspective on protein phosphorylation and a classification system for protein kinases, Phil. Trans. R. Soc. Lond. 303:3–11 (1983).

    Google Scholar 

  59. M. A. Shia, J. B. Rubin, and P. F. Pilch, The insulin receptor protein kinase. Physicochemical requirements for activity, J. Biol. Chem. 258:14450–14455 (1983).

    PubMed  CAS  Google Scholar 

  60. M. F. White, H. U. Häring, M. Kasuga, and C. R. Kahn, Kinetic properties and sites of autophosphorylation of the partially purified insulin receptor from hepatoma cells, J. Biol. Chem. 259:255–264 (1984).

    PubMed  CAS  Google Scholar 

  61. Y. Zick, R. W. Rees-Jones, and J. Roth, Insulin-induced phosphorylation of the insulin receptor: a very early event at the target cell, in “Proceeding of the 11th Congress of the International Diabetes Federation,” Excerpta Medica, Amsterdam (1983), pp. 161–170.

    Google Scholar 

  62. Y. Zick, M. Kasuga, C. R. Kahn, and J. Roth, Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell free system, J. Biol. Chem. 258:75–80 (1983).

    PubMed  CAS  Google Scholar 

  63. D. T. Pang, B. R. Sharma, J. A. Shafer, M. F. White, and C. R. Kahn, Predominance of tyrosine phosphorylation of insulin receptors during the initial response of intact cells to insulin, J. Biol. Chem. 260:7131–7136 (1985).

    PubMed  CAS  Google Scholar 

  64. H. H. Klein, G. R. Freidenberg, M. Kladde, and J. M. Olefsky, Insulin activation of insulin receptor tyrosine kinase activity in intact rat adipocytes: an in vitro system to measure histone kinase activity of insulin receptors activated in vitro, J. Biol. Chem. 261:4691–4697 (1986).

    PubMed  CAS  Google Scholar 

  65. O. M. Rosen, R. Herrera, Y. Oluwe, L. Petruzelli, and M. H. Cobb, Phosphorylation activates the insulin receptor tyrosine kinase, Proc. Natl. Acad. Sci. USA 80:3237–3240 (1983).

    Article  PubMed  CAS  Google Scholar 

  66. K.-T. Yu, and M. P. Czech, Tyrosine phosphorylation of the insulin receptor subunit activates the receptor-associated tyrosine kinase activity. J. Biol. Chem. 259:5277–5286 (1984).

    PubMed  CAS  Google Scholar 

  67. M. Kasuga, Y. Fujita-Yamaguchi, D. L. Blithe, M. F. White, and C. R. Kahn, Characterization of the insulin receptor kinase purified from human placental membranes, J. Biol. Chem. 258:10973–10980 (1983).

    PubMed  CAS  Google Scholar 

  68. L. A. Stadtmauer, and O. M. Rosen, Phosphorylation of exogenous substrates by the insulin receptor-associated protein kinase, J. Biol. Chem. 258:6682–6685 (1983).

    PubMed  CAS  Google Scholar 

  69. E. M. Sale, M. F. White, and C. R. Kahn, Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase, J. Cellular Biochem. 29:15–26 (1986).

    Google Scholar 

  70. Y. Zick, G. Grunberger, R. W. Rees-Jones, and R. J. Comi, Use of tyrosine containing polymers to characterize the substrate specificity of insulin and other hormone-stimulated tyrosine kinases, Eur. J. Biochem. 148:177–182 (1985).

    Article  PubMed  CAS  Google Scholar 

  71. S. Braun, W. E. Raymond, and E. Rucker, Synthetic tyrosine polymers as substrates and inhibitors of tyrosine-specific protein kinases, J. Biol. Chem. 259:2051–2054 (1984).

    PubMed  CAS  Google Scholar 

  72. M. F. White, S. Takayama, and C. R. Kahn, Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro, J. Biol. Chem. 260:9470–9478 (1985).

    PubMed  CAS  Google Scholar 

  73. J. Shemer, N. Perrotti, J. Roth, and D. LeRoith, Characterization of an endogenous substrate related to insulin and insulin growth factor I receptor in lizard brain, J. Biol. Chem. 262:3434–3439 (1987).

    Google Scholar 

  74. R. W. Rees-Jones, and S. I. Taylor, An endogenous substrate for the insulin receptor-associated tyrosine kinase, J. Biol. Chem. 260:4461–4467 (1985).

    PubMed  CAS  Google Scholar 

  75. M. F. White, E. W. Stegmann, T. J. Dull, A. Ullrich, and C. R. Kahn, Characterization of an endogenous substrate of the insulin receptor in cultured cells, J. Biol. Chem. 262:9769–9777 (1987).

    PubMed  CAS  Google Scholar 

  76. M. Bernier, D. M. Laird, and M. D. Lane, Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes, Proc. Natl. Acad. Sci. USA 84:1844–1848 (1987).

    Article  PubMed  CAS  Google Scholar 

  77. H. U. Häring, M. F. White, F. Machico, B. Ermel, E. Schleicher, and B. Obermeir, Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells, Proc. Natl. Acad. Sci. USA 84:113–117 (1987).

    Article  PubMed  Google Scholar 

  78. D. O. Morgan, L. Ho, L. J. Korn, and R. A. Roth, Insulin action is blocked by a monoclonal antibody that inhibits the insulin receptor kinase, Proc. Natl. Acad. Sci. USA 83:328–332 (1986).

    Article  PubMed  CAS  Google Scholar 

  79. C. K. Chou, T. J. Dull, D. S. Russell, R. Gherzi, D. Lebwohl, A. Ullrich, and O. M. Rose, Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin, J. Biol. Chem. 262:1842–1847 (1987).

    PubMed  CAS  Google Scholar 

  80. Y. Ebina, E. Araki, M. Taira, F. Shimada, M. Mori, C. C. Craik, K. Siddle, S. B. Pierce, R. A. Roth, and W. J. Rutter, Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity, Proc. Natl. Acad. Sci. USA 84:704–708 (1987).

    Article  PubMed  CAS  Google Scholar 

  81. I. A. Simpson, and J. Hedo, Insulin receptor phosphorylation may not be a prerequisite for acute insulin action, Science 223:1301–1304 (1984).

    Article  PubMed  CAS  Google Scholar 

  82. Y. Zick, R. W. Rees-Jones, S. I. Taylor, P. Gorden, and J. Roth, The role of antireceptor antibodies in stimulating phosphorylation of the insulin receptor, J. Biol. Chem. 259:4396–4400 (1984).

    PubMed  CAS  Google Scholar 

  83. J. R. Forsayeth, J. F. Caro, M. K. Sinka, B. A. Maddux, and I. D. Goldfine, Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity, Proc. Natl. Acad. Sci. USA 84:3448–3451 (1987).

    Article  PubMed  CAS  Google Scholar 

  84. M. Okamoto, M. F. White, R. Maron, and C. R. Kahn, Autophosphorylation and kinase activity of insulin receptor in diabetic rats, Am. J. Physiol. 251 (Endocrinol. Metab.):E542-E550 (1986).

    PubMed  CAS  Google Scholar 

  85. J. M. Amatruda, and A. M. Roncone, Normal hepatic insulin receptor autophosphorylation in non-ketotic diabetes mellitus, Biochem. Biophys. Res. Commun. 129:163–170 (1985).

    Article  CAS  Google Scholar 

  86. G. Grunberger, Y. Zick, and P. Gorden, Defect in phosphorylation of insulin receptors in cells from an insulin resistant patient with normal insulin binding, Science 223:932–934 (1984).

    Article  PubMed  CAS  Google Scholar 

  87. F. Grigorescu, J. S. Flier, and C. R. Kahn, Defect in receptor phosphorylation in erythrocytes and fibroblasts associated with severe insulin resistance, J. Biol. Chem. 259:15003–15006 (1984).

    PubMed  CAS  Google Scholar 

  88. R. J. Comi, G. Grunberger, and P. Gorden, Relationship of insulin binding and insulin stimulated tyrosine kinase activity is altered in type II diabetes, J. Clin. Invest. 79:453–462 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hart, C.B., Roth, J., Lesniak, M.A. (1988). Post-Translational Modifications of the Insulin Receptor. In: Zappia, V., Galletti, P., Porta, R., Wold, F. (eds) Advances in Post-Translational Modifications of Proteins and Aging. Advances in Experimental Medicine and Biology, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9042-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9042-8_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9044-2

  • Online ISBN: 978-1-4684-9042-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics