Abstract
Investigation of the biochemical basis of cellular transformation is a major area of current research directed towards understanding the problem of tumorigenesis and human cancer. Much progress has been made in identifying primary oncogenic agents, both chemical and viral, in addition to the discovery of cellular oncogenes (Bishop, 1985). Biochemical activities have been associated with the products of some viral and cellular oncogenes, most notably those which belong to the protein kinase family (Erikson and Erikson, 1980).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beach, D. and Nurse, P. 1981, High-frequency transformation of the fission yeastSchizosaccharomyces pombe, Nature, 290:140–142.
Beach, D., Durkacz, B. and Nurse, P. 1982, Functionally homologous cell cycle control genes in budding and fission yeast. Nature, 300:706–709.
Bishop, J. M. 1985, Viral oncogenes, Cell 42:23–38.
Booher, R. and Beach D. 1986,. Site-specific mutagenesis of cdc2 +, a cell cycle control gene of the fission yeast Schizosaccharomyces pombe, Molec. Cell. Biol. 6: 3523–3530.
Costello, G., Rodgers, L. and Beach, D. 1986, Fission yeast enters the stationary phase GO state from either mitotic Gl or G2, Current Genetics 11: 119–125.
Draetta, G., Brizuela, L., Potashkin, J. and Beach, D. 1987, Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2 + and sucl +, Cell, in press.
Ellis, R.W„ DeFeo, D., Shin, T.Y., Gonda, M.A, Young, HA., Tsuchida, N., Lowy, D.R and Scolnick, EM. 1981, The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes, Nature 292: 506–511.
Erikson, E. and Erikson, R.L. 1980, Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell 21:829–836.
Fukui, Y. and Kaziro, Y. 1985, Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe, EMBO J. 4: 687–691.
Hartwell, L.H. 1974, Saccharomyces cerevisiae cell cycle, Bact. Rev. 38: 164–198.
Hindley, J. and Phear, G A. 1984, Sequence of the cell division gene cdc2* from Schizosaccharomyces Pombe: patterns of splicing and homology to protein kinases, Gene 31: 129–134.
Hindley, J., Phear, G., Stein, M. and Beach, D. 1987, Sucl + encodes a predicted 13-kilodalton protein that is essential for cell viability and is directly involved in the division cycle of Schizosaccharomyces Pombe, Molec. Cell. Biol. 7: 504–511.
Lorincz, A.T. and Reed, SX 1984, Primary structure homology between the product of yeast cell division control gene CDC28 and vertebrate oncogenes, Nature 307:183–185.
Mao, J., Schaack, J., Sharp, S., Yamada, H., Kohli, J. and Soll, D. In Molecular genetics of yeast (D. Von Wettstein, ed.) 276–289 (1980).
Mitchison, J.M. 1970, Physiological and Cytological Methods for S. pombe. In Methods in Cell Physiology Ed. Prescott, Vol. 4.
Nurse, P. and Fantes, P. 1981, Cell Cycle controls in fission yeast: a genetic analysis, in P.C.L John Ed. The Cell Cycle, Cambridge 85–98.
Nurse, P. and Thuriaux, P. 1980, Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe, Genetics 96: 627–637.
Nurse, P. and Bissett, Y. 1981, gene required in Gl for committment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292: 558–560.
Powers, S., Kataoka, T., Fasano, O., Goldfarb, M., Strathern, J., Broach, J. and Wigler, M. 1984, Genes in Saccharomyces cerevisiae encode proteins with domains homologous to the mammalian ras proteins, Cell 36: 607–612.
Pringle, J.R. and Hartwell, L.H. 1981, The Saccharomyces cerevisîae cell cycle, in the Molecular Biology of the Yeast. (Strathern et al. eds.) Cold Spring Harbor, NY.
Reed, S.J., Hadwiger, JA. and Lorincz, A.T. 1985, Protein kinase activity associated with the product of the yeast cell cycle gene CDC28, Proc. Natl. Acad. Sci. 82: 4055–4059.
Schechter, Y., Patchornik, A. and Burstein, Y. 1976, Selective chemical cleavage of tryptophenyl peptide bonds by oxidative chlorination with N-chlorosuccinimide, Biochemistry 15: 5071–5075.
Simanis, V. and Nurse, P. 1986, The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation, Cell 45: 261–268.
Studier, F.W. and Moffat, BA. 1986, Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes, J. Mol. Biol. 189: 113–130.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1988 Springer Science+Business Media New York
About this chapter
Cite this chapter
Draetta, G., Brizuela, L., Beach, D. (1988). p34, A Protein Kinase Involved in Cell Cycle Regulation in Eukaryotic Cells. In: Zappia, V., Galletti, P., Porta, R., Wold, F. (eds) Advances in Post-Translational Modifications of Proteins and Aging. Advances in Experimental Medicine and Biology, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9042-8_37
Download citation
DOI: https://doi.org/10.1007/978-1-4684-9042-8_37
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4684-9044-2
Online ISBN: 978-1-4684-9042-8
eBook Packages: Springer Book Archive