Advertisement

Structural Basis for the Specificity of Protein Phosphorylation and Dephosphorylation Processes

  • Lorenzo A. Pinna
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)

Abstract

The phosphorylation of seryl, threonyl and tyrosyl residues is in most instances a reversible process, affecting only a minority of the whole cellular proteins and resulting from the coordinated activity of protein kinases and protein phosphatases (reviewed in 1) . Both these classes of enzymes therefore must be endowed with more or less pronounced time and substrate selectivity. Timeliness is mainly ensured by extra- and intracellular stimuli, either directly or through the generation of second messengers, like cyclic nucleotides, Ca2+, diacylglycerols etc, and by physiological inhibitors, that can modulate the activity of the phosphorylating and dephosphorylating enzymes.

Keywords

Protein Kinase Protein Phosphatase Casein Kinase Peptide Substrate Dependent Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Krebs, The enzymology of control by Phosphorylation in “The enzymes” Vol. XVII P. D. Boyer and E. G. Krebs Eds. p. 3 Academic Press, Inc. (1986).Google Scholar
  2. 2.
    L. A. Pinna, P. Agostinis and S. Ferrari, Selectivity of protein kinases and protein phosphatases: a comparative analysis. Adv. Prot. Phosphatases, 3: 327 (1986).Google Scholar
  3. 3.
    D. R. Colthurst, D. G. Campbell and C. G. Proud, Structure and regulation of eukariotic initiation factor eIF-2: sequence of the site in the subunit phosphorylated by the haem-controlled repressor and by the double-stranded RNA-activated inhibitor. Eur. J. Biochem. (1987), in press.Google Scholar
  4. 4.
    T. Hunter and J. A. Cooper, Protein-tyrosine kinase. Ann. Rev. Biochem. 54: 897 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    F. C. Purves, M. Katan, W. S. Stevely and D. P. Leader, Characteristics of the induction of a new protein kinase in cells infected by herpes viruses. J. Gen. Virol. 67: 1049 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    J. R. Feramisco, D. B. Glass and E. G. Krebs, Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase. J. Biol. Chem. 255: 4240 (1980) .PubMedGoogle Scholar
  7. 7.
    F. C. Purves, A. Donella-Deana, F. Marchiori, D. P. Leader and L. A. Pinna, The substrate specificity of the protein kinase induced in cells infected with herpes viruses: studies with synthetic substrates indicate structural requirements distinct from other protein kinases. Biochim. Biophys. Acta 889: 208 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Meggio, G. Chessa, G. Borin, L. A. Pinna and F. Marchiori, Synthetic fragments of protamines as model substrates for rat liver cAMP-dependent protein kinase. Biochim. Biophys. Acta 662: 94 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Ferrari, F. Marchiori, O. Marin and L. A. Pinna, Ca2+ phospholipid dependent and independent phosphorylation of synthetic peptide substrates by protein kinase C. Eur. J. Biochem. 163: 481 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Ferrari and L. A. Pinna, Phosphorylation of protamines by protein kinase C: involvement of sites which are phosphorylated in vivo and are not affected by cAMP-dependent protein kinase. Biochem. Biophys. Res. Commun. (1987) in press.Google Scholar
  11. 11.
    O. Marin, F. Meggio, F. Marchiori, G. Borin and L. A. Pinna, Site specificity of casein kinase-2 (TS) from rat liver cytosol. A study with model peptide substrates. Eur. J. Biochem. 160: 239 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    J. C. Mercier, Phosphorylation of caseins, present evidence for an aminoacid triplet code post translationally recognized by specific kinases. Biochimie 63: 1 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Moore, A. P. Boulton, H. W. Heid, E-D. Jarasch and R. K. Craig, Purification and tissue specific expression of casein kinase from the lactating guinea-pig mammary grand. Eur. J. Biochem. 152: 729 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    G. M. Hathaway and J. A. Traugh, Casein kinases: multipotential protein kinases, Curr. Topics in Cell Regul. 21: 101 (1982).Google Scholar
  15. 15.
    J. R. Woodgett and P. Cohen, Multisite phosphorylation of glycogen synthase. Molecular basis for the substrate specificity of glycogen synthase kinase-3 and casein kinase-II (Glycogen synthase kinase-5). Biochim. Biophys. Acta 788: 339 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Meggio, A. M. Brunati and L. A. Pinna, Polycation dependent Ca antagonized phosphorylation of calmodulin by casein kinase-2 and a spleen tyrosine protein kinase. FEBS Lett. 215: 241 (1987) .PubMedCrossRefGoogle Scholar
  17. 17.
    T. S. Ingebritsen and P. Cohen, The protein phosphatases involved in cellular regulation. Classification and substrate specificities. Eur. J. Biochem. 132: 255 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    V. P. K. Titanji, U. Ragnarsson, E. Humble and O. Zetterqvist, Phosphopeptide substrates of a phosphoprotein phosphatase from rat liver. J. Biol. Chem. 255: 11339 (1980).PubMedGoogle Scholar
  19. 19.
    A. Donella-Deana, F. Marchiori, F. Meggio and L. A. Pinna, Dephosphorylation of synthetic phosphopeptides by protein phosphatase-T, a phosphothreonyl protein phosphatase. J. Biol. Chem. 257: 8565 (1982).Google Scholar
  20. 20.
    P. Agostinis, J. Goris, E. Waelkens, L. A. Pinna, F. Marchiori and W. Merlevede, Dephosphorylation of phosphoproteins and synthetic phosphopeptides. Study of the specificity of the polycation-stimulated and ATP, Mg-dependent Phosphorylase phosphatases. J. Biol. Chem. 262: 1060 (1987).PubMedGoogle Scholar
  21. 21.
    P. Agostinis, J. Goris, J. R. Vandenheede, E. Waelkens, L. A. Pinna and W. Merlevede, Phosphorylation of the modulator protein of the ATP, Mg-dependent phosphatase by casein kinase TS. Reversal by PCS phosphatases and control by distinct phosphorylation site(s). FEBS Lett. 207: 167 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    G. M. Hathaway and J. A. Traugh, Regulation of casein kinase-II by 2, 3-bisphosphoglycerate in erythroid cells. J. Biol. Chem. 259: 2850 (1984).PubMedGoogle Scholar
  23. 23.
    H. Y. L. Tung, S. Pelech, M. J. Fisher, C.I. Pogson and P. Cohen, The protein phosphatases involved in cellular regulation. Influence of polyamines on the activities of protein phosphatase-1 and protein phosphatase-2A. Eur. J. Biochem. 149: 305 (1985) .PubMedCrossRefGoogle Scholar
  24. 24.
    S. Pelech and P. Cohen, The protein phosphatases involved in cellular regulation. 1. Modulation of protein phosphatase-1 and 2A by histone Hl, protamine, polylysine and heparin. Eur. J. Biochem. 148: 245 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Lorenzo A. Pinna
    • 1
  1. 1.Istituto di Chimica BiologicaUniversità di PadovaPadovaItaly

Personalised recommendations