Classification of Protein Kinases into Messenger-Dependent and Independent Kinases. The Regulation of Independent Kinases

  • James Sommercorn
  • Edwin G. Krebs
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


This paper is divided into three sections. The first section gives an overview of the protein phosphorylation-dephosphorylation process. The second section presents a classification scheme for the protein kinases, and the third section constitutes a brief review of casein kinase II and describes recent work that is being carried out in our laboratory on this messenger-independent protein kinase.


Protein Kinase Casein Kinase Nucleolar Protein Threonine Kinase Protein Serine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rabinowitz, M. and Lipmann, F., Reversible phosphate transfer between yolk phosphoprotein and adenosine triphosphate, J. Biol. Chem., 235:1043–1050 (1960).PubMedGoogle Scholar
  2. 2.
    Luck, K., Muir, L. W. and Fischer, E. H., Purification and properties of a yeast protein kinase, Biochemistry. 14:2015–2023 (1975).CrossRefGoogle Scholar
  3. 3.
    Shizuta, Y., Beavo, J. A., Bechtel, P. J., Hofraann, F. and Krebs, E. G., Reversibility of adenosine 3′:5′-monophosphate-dependent protein kinase reactions, J. Biol. Chem., 250:6891–6896 (1975).PubMedGoogle Scholar
  4. 4.
    Krebs, E. G., Kent, A. B. and Fischer, E. H., The muscle Phosphorylase b kinase reaction, J. Biol. Chem., 231:73–83 (1958).PubMedGoogle Scholar
  5. 5.
    Thompson, P. and Findlay, J. B. C., Phosphorylation of ovine rhodopsin, Biochem J., 220:773–778 (1984).PubMedGoogle Scholar
  6. 6.
    Cohen, P., Muscle glycogen synthase, in The Enzymes XVII (P. D. Boyer and E. G. Krebs, eds.), Academic Press, New York, pp. 461–497 (1986).Google Scholar
  7. 7.
    Krebs, E. G. and Fischer, E. H., The Phosphorylase b to a converting enzyme of rabbit skeletal muscle, Biochim. Biophys. Acta. 20:150–157 (1956).PubMedCrossRefGoogle Scholar
  8. 8.
    Rall, T. W., Sutherland, E. W. and Wosilait, W. D., The relationship of epinephrine and glucagon to liver Phosphorylase, J. Biol. Chem., 218:483–495 (1956).PubMedGoogle Scholar
  9. 9.
    Krebs, E. G., Historical perspectives on protein phosphorylation and a classification system for protein kinases, Phil. Trans. R. Soc. London. B302:3–11 (1983).Google Scholar
  10. 10.
    Hunter, T. and Cooper, J. A., Viral oncogenes and tyrosine phosphorylation, in The Enzymes XVII (P. D. Boyer and E. G. Krebs, eds.), Academic Press, New York, pp. 191–246 (1986).Google Scholar
  11. 11.
    White, M. F. and Kahn, C. R., The insulin receptor and tyrosine phosphorylation, in The Enzymes XVII (P. D. Boyer and E. G. Krebs, eds.), Academic Press, New York, pp. 247–310 (1986).Google Scholar
  12. 12.
    Chen, C.-C, Smith, D. L., Bruegger, B. B., Halpern, R. M. and Smith, R. A., Occurrence and distribution of acid-labile histone phosphates in regenerating rat liver, Biochemistry, 13:3785–3789 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    Kuhn, H. and Dreyer, W. J., Light dependent phosphorylation of rhodopsin by ATP, FEBS Lett., 20:1–6 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    Bownds, D., Dawes, J., Miller, J. and Stahlman, M., Phosphorylation of frog photoreceptor membranes induced by light, Nature (Lond.). 237:125–127 (1972).Google Scholar
  15. 15.
    Benovic, J. L., Strasser, R. H., Caron, M. G. and Lefkowitz, R. J., ß-Adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist occupied form, Proc. Natl. Acad. Sci. USA. 83:2797–2801 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    Hathaway, G. M. and Traugh, J. A., Casein kinases—Multipotential protein kinases, Curr. Top. Cell. Regul., 21:101–127 (1982)PubMedGoogle Scholar
  17. 17.
    Cochet, C. and Chambaz, E. M., Polyamine-mediated protein phosphorylations: A possible target for intracellular polyamine action, Mol. Cell. Endocrinol., 30:247–266 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    Pinna, L. A., Meggio, F., Donella-Deana, A. and Brunati, A., Type-2 casein kinases: Structure, metabolic involvements and regulation, Proc. 16th FEBS Congr. Pt. A., pp. 155–163 (1985).Google Scholar
  19. 19.
    Edelman, A. M, Blumenthal, D. K. and Krebs, E. G., Protein serine/threonine kinases, Ann. Rev. Biochem., 56:567–613 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    Singh, T. J. and Huang, K.-P., Glycogen synthase (casein) kinase-1: tissue distribution and subcellular localization, FEBS Lett., 190:84–88 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    Takio, K., Kuenzel, E. A., Walsh, K. A. and Krebs, E. G., Amino acid sequence of the beta subunit of bovine lung casein kinase II, Proc. Natl. Acad. Sci. USA. 84: in press, (1987).Google Scholar
  22. 22.
    Hathaway, G. M. and Traugh, J. A., Cyclic nucleotide-independent protein kinases from rabbit reticulocytes, J. Biol. Chem., 254:762–768 (1979).PubMedGoogle Scholar
  23. 23.
    Glover, C. V. C., J. Biol. Chem., A filamentous form of Drosphila casein kinase II, 261:14349–14354 (1986).Google Scholar
  24. 24.
    Hathaway, G. M. and Traugh, J. A., Kinetics of activation of casein kinase II by polyamines and reversal of 2,3-bisphosphoglycerate inhibition, J. Biol. Chem., 259:7011–7015 (1984).PubMedGoogle Scholar
  25. 25.
    Hathaway, G. M., Lubben, T. H. and Traugh, J. A., Inhibition of casein kinase II by heparin, J. Biol. Chem., 255:8038–8041 (1980).PubMedGoogle Scholar
  26. 26.
    Meggio, F., Donella-Deana, A., Brunati, A. M. and Pinna, L. A., Inhibition of rat liver cytosol casein kinases by heparin, FEBS Lett. 141, 257–262 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    Feige, J. J., Pirollet, F., Cochet, C. and Chambaz, E. M., Selective inhibition of a cyclic nucleotide-independent protein kinase kinase (G-type casein kinase) by naturally occurring glycosaminoglycans, FEBS Lett., 121:139–142 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    Nakajo, S., Hagiwara, T., Nakaya, K. and Nakamura, Y., Tissue distribution of casein kinases, Biochem. Intl., 13:701–707 (1986).Google Scholar
  29. 29.
    Yutani, Y., Tei, Y., Munehiko, Y. and Inoue, A., Occurrence of NI and NII type protein kinases in the nuclei from various tissues of the rat, Arch. Biochem. Biophys., 218:409–420 (1982).CrossRefGoogle Scholar
  30. 30.
    Pena, J. M., Itarte, E., Domingo, A. and Cusso, R., Cyclic adenosine 3′:5′-Monophosphate-dependent and -independent protein kinases in human leukemic cells, Cancer Res., 43:1172–1175 (1983).PubMedGoogle Scholar
  31. 31.
    Brunati, A. M., Saggioro, D., Chieco-Bianchi, L. and Pinna, L. A., Altered protein kinase activities of lymphoid cells transformed by Abelson and Moloney leukemia viruses, FEBS Lett., 206:59–63 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    Rose, K. M., Bell, L. E., Siefken, D. A. and Jacob, S. T., A heparinsensitive nuclear protein kinase, J. Biol. Chem., 256:7468–7477 (1981).PubMedGoogle Scholar
  33. 33.
    Prowald, K., Fischer, H. and Issinger, O.-G., Enhanced casein kinase II activity in human tumour cell cultures, FEBS Lett., 176:479–483 (1986).CrossRefGoogle Scholar
  34. 34.
    Schneider, H. R., Reichert, G. H., and Issinger, O.-G., Enhanced casein kinase II activity during mouse embryogenesis, Eur. J. Biochem., 161:733–738 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    Miyazaki, K., Miyamoto, E., Maeyama, M. and Uchida, M., Specific regulation by steroid hormones of protein kinases in the endometrium, Eur. J. Biochem., 104:535–542 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    Keller, R. K., Chandra, T., Schrader, W. T. and O’Malley, B. W., Protein kinases of the chick oviduct: A study of the cytoplasmic and nuclear enzymes, Biochemistry, 15:1958–1967 (1976).PubMedCrossRefGoogle Scholar
  37. 37.
    Roques, M., Tirard, A., and DeGroot, L. J., Liver protein kinase activity and triiodothyronine, Endocrinology, 100:967–973 (1977).PubMedCrossRefGoogle Scholar
  38. 38.
    Pavlovic-Hournac, M., Delbauffe, D. and Ohayon, R., Hormonal regulation of cAMP-independent protein Phosphokinase activities: Thyroxine and Cortisol control of enzymes from rat liver cytosol, Mol. Cell. Endocrinol., 12:255–265 (1978).PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura, H., Rue, P. A., and DeGroot, L. J., Thyroid hormone increases type I adenosine 3′,5′-monophosphate-dependent protein kinase and casein kinase activities in rat liver cytosol: Analysis of protein kinases by Polyacrylamide disc gel electrophoresis, Endocrinology. 112:1427–1433 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    Nakamura, H. and DeGroot, L. J., cAMP-independent casein kinase mediates phosphorylation of many T3-dependent phosphoproteins in rat liver cytosol, Horm. Metabol. Res., 16:576–580 (1984).CrossRefGoogle Scholar
  41. 41.
    Suzuki, N., Saito, T. and Hosoya, T., In vivo effects of dexamethasone and cycloheximide on the phosphorylation of 110-kDa proteins and the protein kinase activities of rat liver nucleoli, J. Biol. Chem., 262: 4696–4700 (1987).Google Scholar
  42. 42.
    Geahlen, R. L. and Harrison, M. L., Induction of a substrate for casein kinase II during lymphocyte mitogenesis, Biochim. Biophys. Acta. 804:169–175 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    Ballal, N. R., Kang, Y.-J., Olson, M. O. J. and Busch, H., Changes in nucleolar proteins and their phosphorylation patterns during liver regeneration, J. Biol. Chem., 250:5921–5925 (1975).PubMedGoogle Scholar
  44. 44.
    Kuenzel, E. A. and Krebs, E. G., A synthetic peptide substrate specific for casein kinase II, Proc. Natl. Acad. Sci. USA, 82:737–741 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    Kuenzel, E. A., Mulligan, J. A., Sommercorn, J. and Krebs, E. G., Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides, J. Biol, Chem., 262: in press (1987).Google Scholar
  46. 46.
    Sommercorn, J. and Krebs, E. G., Induction of casein kinase II during differentiation of 3T3-L1 cells, J. Biol. Chem., 262:3839–3843 (1987).PubMedGoogle Scholar
  47. 47.
    Rubin, C. S., Hirsch, A., Fung, C. and Rosen, O. M., Development of hormone receptors and hormonal responsiveness in vitro, J. Biol. Chem., 253:7570–7578 (1978).PubMedGoogle Scholar
  48. 48.
    Goodridge, A. G., Fisch, J. E. and Glynias, M. J., Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells, Arch. Biochem. Biophys., 228:54–63 (1984).PubMedCrossRefGoogle Scholar
  49. 49.
    Wise, L. S., Sul, H. S. and Rubin, C. S., Coordinate regulation of the biosynthesis of ATP-citrate lyase and malic enzyme during adipocyte differentiation, J. Biol. Chem., 259:4827–4832 (1984).PubMedGoogle Scholar
  50. 50.
    Mackall, J. C., Student, A. K., Polakis, S. E. and Lane, M. D., Induction of lipogenesis during differentiation in a “preadipocyte” cell line, J. Biol. Chem., 251:6462–6464 (1976).PubMedGoogle Scholar
  51. 51.
    Knutson, V. P., Ronnett, G. V. and Lane, M.D., Control of insulin receptor level in 3T3 cells: Effect of insulin-induced down regulation and dexamethasone-induced up-regulation on rate of receptor inactivation, Proc. Natl. Acad. Sci. USA. 79:2822–2826 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    Hemmings, B. A., Aitken, A., Cohen, P., Rymond, M. and Hofmann, F., Phosphorylation of the type-II regulatory subunit of cylic-AMP-dependent protein kinase by glycogen synthase kinase 3 and glycogen synthase kinase 5, Eur. J. Biochem., 127:473–481 (1982).PubMedCrossRefGoogle Scholar
  53. 53.
    DePaoli-Roach, A. A., Synergistic phosphorylation and activation of ATP-Mg-dependent phosphoprotein phosphatase by FA/GSK-3 and casein kinase II (PC0.7), J. Biol. Chem., 259:12144–12152 (1984).PubMedGoogle Scholar
  54. 54.
    Picton, C., Woodgett, J., Hemmings, B. and Cohen, P., Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle, FEBS Lett., 150:191–196 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    Ackerman, P., Glover, C. V. C. and Osheroff, N., Phosphorylation of DNA topoisomerase II by casein kinase II: Modulation of eukaryotic topoisomerase II activity in vitro, Proc. Natl. Acad. Sci. USA. 82:3164–3168 (1985).PubMedCrossRefGoogle Scholar
  56. 56.
    Walton, G. M. and Gill, G. N., Identity of the in vivo phosphorylation site in high mobility group 14 protein in HeLa cells with the site phosphorylated by casein kinase II in vitro, J. Biol. Chem. 258:4440–4446 (1983).PubMedGoogle Scholar
  57. 57.
    Durban, E., Goodenough, M., Mills, J. and Busch, H., Topoisomerase I phosphorylation in vitro and in rapidly growing Novikoff hepatoma cells, EMBO. J., 4:2921–2926 (1985).PubMedGoogle Scholar
  58. 58.
    Duceman, B. W., Rose, K. M. and Jacob, S. T., Activation of purified hepatoma RNA polymerase I by homologous protein kinase NII J. Biol. Chem., 256:10755–10758 (1981).PubMedGoogle Scholar
  59. 59.
    Zandomeni, R. and Weinmann, R., Inhibitory effect of 5,6-Dichloro-1-ß-D-ribofuranosylbenzimidazole on a protein kinase, J. Biol. Chem., 259:14804–14811 (1984).PubMedGoogle Scholar
  60. 60.
    Zandomeni, R., Zandomeni, M. C., Shugar, D. and Weinmann, R., Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription, J. Biol. Chem., 261:3414–3419 (1986).PubMedGoogle Scholar
  61. 61.
    Kramer, G. and Hardesty, B., Phosphorylation reactions that influence the activity of eIF-2, Curr. Top. Cell. Regul., 20:185–203 (1981).PubMedGoogle Scholar
  62. 62.
    DePaoli-Roach, A. A., Roach, P. J., Pham, K., Kramer, G. and Hardesty, B., Phosphorylation of glycogen synthase and of the ß subunit of eukaryotic initiation factor two by a common protein kinase, J. Biol. Chem., 256:8871–8874 (1981).PubMedGoogle Scholar
  63. 63.
    Thoen, C., DeHert, E. and Siegers, H., Identification of the ribosomal proteins phosphorylated by the ribosome-associated casein kinase type II from cryptobiotic gastrulae of the brine shrimp Artemia Sp., Biochem. Biophys. Res. Commun., 135:347–354 (1986).PubMedCrossRefGoogle Scholar
  64. 64.
    Witters, L. A., Tipper, J. P. and Bacon, G. W., Stimulation of sitespecific phosphorylation of acetyl coenzyme A carboxylase by insulin and epinephrine, J. Biol. Chem., 258:5643–5648 (1983).PubMedGoogle Scholar
  65. 65.
    Inoue, A., Tei, Y., Masuma, Y., Yukioka, M. and Morisawa, S., Phosphorylation of HMG 17 by protein kinase NII from rat liver cell nuclei, FEBS Lett., 117:68–72 (1980).PubMedCrossRefGoogle Scholar
  66. 66.
    Chan, P.-K., Aldrich, M., Cook, R. G. and Busch, H., Amino acid sequence of protein B23 phosphorylation site, J. Biol. Chem., 261:1868–1872 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • James Sommercorn
    • 1
  • Edwin G. Krebs
    • 1
  1. 1.Department of Pharmacology and the Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA

Personalised recommendations