Post-Translational Methylations of Ribosomal Proteins

  • Jean-Hervé Alix
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


An unexpected feature of the structure of ribosomes is the numerous postsynthetic methylations which affect their RNA and protein constituents. Post-transcriptional methylations found in ail ribosomal RNAs (except 5s RNA) have been reviewed elsewhere (Alix, 1985). Similarly, several ribosomal proteins have been found post-translationally methylated, first in studies with Escherichia coli, and then in other organisms (bacteria, yeast, protozoa. HeLa cells). Methylation of ribosomal proteins therefore seems to be a general phenomenon. It raises a series of questions concerning the chronology of the modification reactions, the origin of the methyl groups introduced into the proteins, the number and properties of methyltransferases, the molecular basis of the specificity of protein methylation, the role of methylation in ribosome function and/or biogenesis, etc..


HeLa Cell Ribosomal Protein Elongation Factor Ribosomal Subunit FEBS Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alix, J. H. and Hayes, D. H., 1974a, Détection de Nε, Nε, Nε-trlmethyllysine dans la protéine ribosomale L11 par méthylatlon des rlbosomes d’E. coll synthétisés en présence d’éthionine. C. R. Acad. Sc. Paris, 278:951.Google Scholar
  2. Alix, J. H. and Hayes, D.H., 1974b, Properties of rlbosomes and RNA synthesized by E. coli grown In the presence of ethionine. III. Methylated proteins in 50S ribosomes of E. coli EA2. J. Mol. Biol .,86: 139.PubMedGoogle Scholar
  3. Alix, J. H., Hayes, D., Lontie, J. F., Colson, C., Glatigny, A. and Lederer, F., 1979a, Methylated aminoacids in ribosomal proteins from E. coli treated with ethionine and from a mutant lacking methylation of protein L11, Biochimie, 61:671.PubMedGoogle Scholar
  4. Alix, J. H., Hayes, D. and Nierhaus, K. H., 1979b, Properties of ribosomes and RNA synthesized by E. coli grown in the presence of ethionine. V. Methylation dependence of the assembly of E. coli 50S ribosomal subunits, J. Mol. Biol., 127:375.PubMedGoogle Scholar
  5. Alix, J. H., 1982a. Post-translational methylations of ribosomal proteins in E. coli, in: “Biochemistry of S-adenosylmethionine and related compounds”, E. Usdin, R.T. Borchardt and C. R. Creveling, eds., Mac Millan Press Ltd., pp. 303–307.Google Scholar
  6. Alix, J. H., 1982b, Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. Microbiological Reviews, 46:281.PubMedGoogle Scholar
  7. Alix, J. H., 1985, Relationship between methylation and maturation of ribosomal RNA in procaryotic and eucaryotic cells, in: “Biological Methylation and Drug Design”, R.T. Borchardt. C. R. Creveling and P.M. Ueland, eds., Humana Press Inc., Clifton. New Jersey, pp. 175–187.Google Scholar
  8. Amaro, A.M. and Jerez, C.A., 1984, Methylation of ribosomal proteins in bacteria: evidence of conserved modification of eubacterial 50S subunit. J. Bact., 158:84.PubMedGoogle Scholar
  9. Ames, G.F.L. and Niakido, K., 1979, In vivo methylation of prokaryotic elongation factor Tu. J. Biol. Chem., 254:9947.PubMedGoogle Scholar
  10. Amons, R., Pluijms, W., Roobol, K. and Möller, W., 1983, Sequence homology between EF-1α, the α-chain of elongation factor 1 from Artemia salina and elongation factor EF-Tu from E. coli, FEBS Letters, 153:37.PubMedGoogle Scholar
  11. Arai, K., Clark, B. F. C., Duffy, L., Jones, M. D., Kaziro, Y., Laursen, R. A., L’Italien, J.J., Miller, D. L., Nagarkatti, S., Nakamura, S., Nielsen, K.M., Petersen, T. E., Takahashi, K. and Wade, M., 1980, Primary structure of elongation factor Tu from E. coli, Proc. Natl. Acad. Sci .USA, 77:1326.PubMedGoogle Scholar
  12. Baxter, R. M. and Zahid, N., 1986, L16, a bifunctionai ribosomal protein and the enhancing effect of L6 and L11, Eur. J. Biochem., 155:273.PubMedGoogle Scholar
  13. Beaud, G. and Hayes, D.H., 1971a, Propriétés des ribosomes et du RNA synthétisés par E. coli cultivé en présence d’éthionine. 1. Interactions entre les sous-unités ribosomiques 30S et 50S synthétisées en présence d’éthionine, Eur. J. Biochem., 19:323.PubMedGoogle Scholar
  14. Beaud, G. and Hayes, D.H., 1971b, Propriétés des ribosomes et du RNA synthétisés par E. coli cultivé en présence d’éthionine. 2. Méthylation in vitro des ribosomes-éthionine, Eur. J. Biochem., 20:525.PubMedGoogle Scholar
  15. Brauer, D. and Wittmann-Liebold, B., 1977, The primary structure of the initiation factor IF-3 from E. coli, FEBS Letters, 79:269.PubMedGoogle Scholar
  16. Brosius, J. and Chen, R., 1976, The primary structure of protein L16 located at the peptidyltransferase center of E. coli ribosomes, FEBS Letters, 68:105.PubMedGoogle Scholar
  17. Cannon, M., Schindler, D. and Davies, J., 1977, Methylation of proteins in 60S ribosomal subunits from Saccharomyces cerevisiae, FEBS Letters, 75:187.PubMedGoogle Scholar
  18. Cannon, M. and Cundliffe, E., 1979, Methylation of basic proteins in ribosomes from wild-type and thiostrepton-resistant strains of Bacillus megaterium and their electrophoretic analysis, Eur. J. Biochem., 97:541.PubMedGoogle Scholar
  19. Chang, C. N. and Chang, F. N., 1974, Methylation of ribosomal proteins In vitro, Nature, 251:731.PubMedGoogle Scholar
  20. Chang, F. N., Chang, C.N. and Paik, W. K., 1974, Methylation of ribosomal proteins in E. coli, J. Bact., 120:651.PubMedGoogle Scholar
  21. Chang, C.N. and Chang, F.N., 1975, Methylation of the ribosomal proteins in E. coli. Nature and stoichiometry of the methylated aminoacids in 50S ribosomal proteins. Biochemistry, 14:468.PubMedGoogle Scholar
  22. Chang, F. N., Cohen, L. B., Navickas, I.J. and Chang, C. N., 1975, Purification and properties of a ribosomal protein methylase from E. coli Q13, Biochemistry, 14:4994.PubMedGoogle Scholar
  23. Chang, C. N., Schwartz, M. and Chang, N., 1976, Identification and characterization of a new methylated aminoacid in ribosomai protein L33 of E. coli, Biochem. Biophys. Res. Commun., 73:233.PubMedGoogle Scholar
  24. Chang, F.N., Navickas, I.J., Chang, C.N. and Danois, B. M., 1976, Methylation of ribosomal proteins in HeLa cells. Arch. Biochem. Biophys., 172:627.PubMedGoogle Scholar
  25. Chang, F.N. and Budzilowicz, C., 1977, Characterization of methylated neutral aminoacids from E. coli ribosomes, J. Bact., 131:105.PubMedGoogle Scholar
  26. Chang, F. N., 1978, Temperature-dependent variation in the extent of methylation of ribosomal proteins L7 and L12 in E. coli, J. Bact., 135:1165.PubMedGoogle Scholar
  27. Chang, F. N., Navickas, I.J., Au, C. and Budzilowicz, C., 1978, Identification of the methylated ribosomal’ proteins in HeLa cells and the fluctuation of methylation during the cell cycle, Biochim. Biophys. Acta, 518:89.PubMedGoogle Scholar
  28. Chang, F.N. and Budzilowicz. 1979. Growth-temperature dependent variation in the methylation of ribosomal proteins in E. coli, in: “Transmethylation”, E. Usdin, R.T. Borchardt and C. R. Creveling, eds., Elsevier North Holland, Inc. pp. 573–582.Google Scholar
  29. Chang, F. N., 1981. Methylation of ribosomal proteins during ribosome assembly in E.coli. Mol. Gen. Gent .,183:418.Google Scholar
  30. Chang, J.Y., 1978, A novel Edman-type degradation: direct formation of the thiohydantoin ring in alkaline solution by reaction of Edman-type reagents with N-monomethyl aminoacids. FEBS Letters. 91:63.PubMedGoogle Scholar
  31. Chen, R., Ehrke, G., 1976, The primary structure of the 5S RNA binding protein L5 of E. coli ribosomes, FEBS Letters, 69:240.PubMedGoogle Scholar
  32. Chen, R., Brosius, J., Wittmann-Liebold, B. and Schäfer, W., 1977, Occurrence of methylated aminoacids as N-termini of proteins from E. coli ribosomes, J. Mol. Biol., 111:173.PubMedGoogle Scholar
  33. Chen, R. and Chen-Schmelsser, U., 1977, Isopeptide linkage between Nocmonomethylalanine and lysine in ribosomal protein Sil from E. coli, Proc. Natl. Acad. Sci. USA, 74:4905.PubMedGoogle Scholar
  34. Christy, M. R., Barkley, R. M., Koch, T. H., Van Buskirk, J.J. and Kirsch, W.M., 1981, The new aminoacid β-carboxyaspartic acid. Laboratory synthesis and identification in the ribosomal proteins of E. coli, J. Am. Chem. Soc .,103:3935.Google Scholar
  35. Colson, C. and Smith, H.O., 1977, Genetics of ribosomal protein methylation in E. coli. I. A mutant deficient in methylation of protein L11, Molec. Gen. Genet .,154:167.PubMedGoogle Scholar
  36. Colson, C., Lhoest, J. and Urlings, C., 1979, Genetics of ribosomal protein methylation in E. coll. III. Map position of two genes, prm A and prm B governing methylation of proteins LI 1 and L3, Molec. Gen. Genet., 169:245.PubMedGoogle Scholar
  37. Coison, C. and Lhoest, J., 1982, Methylation of ribosomal proteins L3 and L11 in E. coll, in “Biochemistry of S-adenosylmethionine and related compounds”, E. Usdin, R.T. Borchardt and C. R. Creveling, eds., Mac Millan Press Ltd., pp. 31–37.Google Scholar
  38. Comb, D.G., Sarkar, N. and Pinzino, C.J., 1966, The methylation of lysine residues in protein, J. Biol. Chem., 241:1857.PubMedGoogle Scholar
  39. Coppard, N.J., Clark, B.F.C. and Cramer, F., 1983, Methylation of elongation factor la in mouse 3T3B and 3T3B/SV40 cells, FEBS Letters, 164: 330.PubMedGoogle Scholar
  40. Cundliffe, E., Dixon, P., Stark, M., Stöffler, G., Ehrlich, R., Stöffler-Meilicke, M. and Cannon, M., 1979, Ribosomes in thiostreptonresistant mutants of Bacillus megaterium lacking a single 50S subunit protein, J. Mol. Biol., 132:235.PubMedGoogle Scholar
  41. Cyrne, M. L., Rodrigues-Pousada, C. and Hayes, D., 1981, Methylation of ribosomal proteins in Tetrahymena pyriformis. Biochimie, 63:641.PubMedGoogle Scholar
  42. Dabbs, E. R., 1978, Mutational alterations in 50S proteins of the E. coli ribosome, Molec. Gen. Genet., 165:73.PubMedGoogle Scholar
  43. Dabbs, E. E., 1980, The ribosomal components responsible for Kasugamycin dependence, and its suppression in a mutant of E. coli, Molec; Gen. Genet., 177:271.PubMedGoogle Scholar
  44. Dennis, P. P., 1974, In vivo stability, maturation and relative differential synthesis rates of individual ribosomal proteins in E. coli B/r, J. Mol. Biol., 88:25.PubMedGoogle Scholar
  45. Dognin, M.J. and Wittman-Liebold, B., 1977, The primary structure of L11, the most heavily methylated protein from E. coli ribosomes, FEBS Letters, 84:342.PubMedGoogle Scholar
  46. Dognin, M.J. and Wittmann-Liebold, B., 1980a, Purification and primary structure, determination of the N-terminal blocked aminoacid of protein L11 from E. coli ribosomes, Eur. J. Biochem., 112:131.PubMedGoogle Scholar
  47. Dognin, M.J. and Wittmann-Liebold, B., 1980b. Identification of methylated aminoacids during sequence analysis. Application to the E. coli ribosomal protein L11, Hoppe-Seyler’s Z. Physiol. Chem .,361:1697.PubMedGoogle Scholar
  48. Durban, E., Nochumson, S., Kim, S., Paik, W. K. and Chan, S. K., 1978, Cytochrome c-specific protein-lysine methyltransferase from Neurospora crassa, J. Biol. Chem., 253: 1427.PubMedGoogle Scholar
  49. Fonzi, W.A., Katayama, C., Leathers, T. and Sypherd, P.S., 1985, Regulation of protein synthesis factor EF-la in Mucor racemosus, Mol. Cell. Biol .,5:1100.PubMedGoogle Scholar
  50. Funatsu, G., Yaguchi, M. and Wittmann-Liebold, B., 1977, Primary structure of protein S12 from the small E. coli ribosomal subunit, FEBS Letters, 73:12.PubMedGoogle Scholar
  51. Goldenberg, C.J. and Eliceiri, G. L., 1977, Methylation of ribosomal proteins in HeLa cells, Biochim. Biophys. Acta, 479:220.PubMedGoogle Scholar
  52. Hampl, H., Schulze, H. and Nierhaus, K. H., 1981, Ribosomal components from E. coli 50S subunits involved in the reconstitution of peptidyltransferase activity, J. Biol. Chem., 256:2284.PubMedGoogle Scholar
  53. Henry, G. D., Trayer, I. P., Brewer, S. and Levine, B.A., 1985, The widespread distribution of α-N-trimethylalanine as the N-terminal aminoacid of light chains from vertebrate striated muscle myosins, Eur. J. Biochem., 148:75.PubMedGoogle Scholar
  54. Hernandez, F., Cannon, M. and Davies, J., 1978, Methylation of proteins in 40S ribosomal subunits from Saccharomyces cerevisiae, FEBS Letters, 89:271.PubMedGoogle Scholar
  55. Hiatt, W. R., Garcia, R., Merrick, W.C. and Sypherd, P.S., 1982, Methylation of elongation factor la from the fungus Mucor, Proc. Natl. Acad. Sci .USA, 79:3433.PubMedGoogle Scholar
  56. Hitz, H., Schäfer, D. and Wittmann-Liebold, B., 1975, Primary structure of ribosomal protein S6 from the wild type and a mutant of E. coli, FEBS Letters, 56:259.PubMedGoogle Scholar
  57. Isono, K., Krauss, J. and Hirota, Y., 1976, Isolation and characterization of temperature-sensitive mutants of E. coli with altered ribosomal proteins, Molec. Gen. Genet., 149:297.PubMedGoogle Scholar
  58. Isono, S., Isono, K. and Hirota, Y., 1978, Mutations affecting the structural genes and the genes coding for modifying enzymes for ribosomal proteins in E. coli, Molec. Gen. Genet., 165: 15.PubMedGoogle Scholar
  59. Isono, K., 1980, Genetics of ribosomal proteins and their modifying and processing enzymes in E. coli, in: “Ribosomes, Structure, Function and Genetics”, G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura, eds., University Park Press, pp. 641–669.Google Scholar
  60. Isono, K. and Isono, S., 1980, Ribosomal protein modification in E. coll. II. Studies of a mutant lacking the N-terminal acetylation of protein S18, Molec. Gen. Genet., 177:645.PubMedGoogle Scholar
  61. Isono, S. and Isono, K., 1981, Ribosomal protein modification in E. coli. III. Studies of mutants lacking an acetyiase activity specific for protein L12, Molec. Gen. Genet, 183:473.PubMedGoogle Scholar
  62. Janda, I., Kitakawa, M. and Isono, K., 1985, Gene rpm F for ribosomal protein L32 and gene rim J for a ribosomal protein acetylating enzyme are located near pyr C in E. coli, Mol. Gen. Genet., 201:433.PubMedGoogle Scholar
  63. Jerez, C. and Weissbach, H., 1980, Methylation of newly synthesized ribosomal protein L11 in a DNA-directed in vitro system, J. Biol. Chem., 255:8706.PubMedGoogle Scholar
  64. Juan-Vidales, F., Sanchez Madrid, F., Saenz-Robles, M.T. and Ballesta, J. P. G., 1983. Purification and characterization of two ribosomal proteins of Saccharomyces cerevisiae. Homologies with proteins from eukaryotic species and with bacterial protein EC/L11, Eur. J. Biochem., 136:275.PubMedGoogle Scholar
  65. Kaye, A.M. and Sheratzky, D., 1969, Methylation of protein (histone) in vitro: enzymatic activity from the soluble fraction of rat organs, Biochim. Biophys. Acta, 190:527.PubMedGoogle Scholar
  66. Kamp, R. and Wittmann-Liebold, B., 1980, Primary structure of protein S11 from E.coli ribosomes, FEBS Letters, 121:117.PubMedGoogle Scholar
  67. Kim, S., Lew, B. and Chang, F. N., 1977, Enzymatic methylesterification of E. coli ribosomal proteins, J. Bact., 130:839.PubMedGoogle Scholar
  68. Kime, M.J., Ratcliffe, R.G., Moore, P. B. and Williams, R.J. P., 1980, On the renaturation of ribosomal protein L11, Eur. J. Biochem., 110:493.PubMedGoogle Scholar
  69. Kimura, M., Ernst, H. and Appelt, K., 1983, The primary structure of initiation factor IF3 from Bacillus stearothermophilus, FEBS Letters, 160: 78.PubMedGoogle Scholar
  70. Klagsbrun, M. and Furano, A. V., 1975, Methylated aminoacids in the proteins of bacterial and mammalian cells. Arch. Biochem. Biophys., 169:529.PubMedGoogle Scholar
  71. Klotz, A. V., Leary, J. A. and Glazer, A.N., 1986. Post-translational methylation of asparaginyl residues: identification of β-71-γ-N-methylasparagine in allophycocyanin, J. Biol. Chem., 261:15891.PubMedGoogle Scholar
  72. Kruiswijk, T., Kunst, A., Planta, R.J. and Mager, W. H., 1978, Modification of yeast ribosomal proteins: methylation, Biochem. J., 175:221.PubMedGoogle Scholar
  73. Kushner, S. R., Maples, V. F. and Champney, W. S., 1977, Conditionally lethal ribosomal protein mutants: characterization of a locus required for modification of 50S subunit proteins, Proc. Natl. Acad. Sci. USA, 74:467.PubMedGoogle Scholar
  74. Laursen, R.A., L’Italien, J.J., Nagarkatti, S. and Miller, D. L., 1981, The aminoacid sequence of elongation factor Tu of E. coli, J. Biol. Chem., 256:8102.PubMedGoogle Scholar
  75. Lederer, F., Alix, J. H. and Hayes, D., 1977, N-trimethylalanine, a novel blocking group found in E. coli ribosomal protein L11, Biochem; Biophys. Res. Commun., 77:470.PubMedGoogle Scholar
  76. Lhoest, J. and Colson, C., 1977, Genetics of ribosomal protein methylation in E. coll. II. A mutant lacking a new type of methylated aminoacid, N5-methylglutamine, in protein L3, Molec. Gen. Genet., 154: 175.PubMedGoogle Scholar
  77. Lhoest, J. and Colson, C., 1981, Cold-sensitive ribosome assembly in an E. coli mutant lacking a single methyl group in ribosomal protein L3, Eur. J. Biochem., 121:33.PubMedGoogle Scholar
  78. Lhoest, J., Hespel, F., Lontie, J. F., Andrade, E., Digneffe, C., Colson, C. and Dabbs, E., 1982, Why is ribosomal protein L11 of E. coli methylated?, in: “Biochemistry of S-adenosylmethionine and related compounds”, E. Usdin, R. T. Borchardt and C.R. Creveling, eds., MacMillan Press Ltd., pp. 79–82.Google Scholar
  79. Lhoest, J., Lobet, Y., Costers, E. and Colson, C., 1984, Methylated proteins and aminoacids in the ribosomes of Saccharomyces cerevisiae, Eur. J. Biochem., 141:585.PubMedGoogle Scholar
  80. L’Italien, J.J. and Laursen, R. A., 1979, Location of the site of methylation in elongation factor Tu, FEBS Letters, 107:359.PubMedGoogle Scholar
  81. Mardones, E., Amaro, A.M. and Jerez, C.A., 1980, Methylation of ribosomal proteins in Bacillus subtilis, J. Bact., 142:355.PubMedGoogle Scholar
  82. Muranova, T.A., Muranov, A. V., Markova, L. F. and Ovchinnikov, Y. A., 1978, The primary structure of ribosomal protein L3 from E. coli 70S ribosomes, FEBS Letters, 96:301.PubMedGoogle Scholar
  83. Nomoto, M., Kyogoku, Y. and Iwai, K., 1982, N-trimethylalanine, a novel blocked N-terminal residue of Tetrahymena histone H2B, J. Biochem., 92:1675.PubMedGoogle Scholar
  84. Ohba, M., Koiwai, O., Tanada, S. and Hayashi, H., 1979, In vivo methylation of elongation factor Tu of E. coli, J. Biochem .,86: 1233.PubMedGoogle Scholar
  85. Paik, W. K. and Kim, S., 1968, Protein methylase I: purification and properties of the enzyme, J. Biol. Chem., 243:2108.PubMedGoogle Scholar
  86. Paik, W. K. and Kim, S., 1975, Protein methylation: chemical, enzymological and biological significance. Adv. in Enzymology, 42:227.Google Scholar
  87. Reeh, S. and Pedersen, S., 1979, Post-translational modification of E. coli ribosomal protein S6, Molec. Gen. Genet., 173:183.Google Scholar
  88. Reporter, M., 1973, Methylation of basic residues in structural proteins, Mech. Ageing Pev., 1:367.Google Scholar
  89. Robertson, W. R., Dowsett, S.J. and Hardy, S.J.S., 1977, Exchange of ribosomal proteins among the ribosomes of E. coli, Molec. Gen. Genet., 157:205.PubMedGoogle Scholar
  90. Röhl, R. and Nierhaus, K. H., 1979, Methyl groups of ribosomal protein L11 are not related to the synthesis of ppGpp, Molec. Gen. Genet., 170: 187.PubMedGoogle Scholar
  91. Scolnik, P.A. and Eliceiri, G. L., 1979. Methylation sites in HeLa cell ribosomal proteins, Eur. J. Biochem., 101:93.PubMedGoogle Scholar
  92. Stark, M. and Cundiiffe, E., 1979, On the biological role of ribosomal protein BM-L11 of Bacillus megaterium, homologous with E. coli ribosomal protein L11, J. Mol. Biol., 134:767.PubMedGoogle Scholar
  93. Stark, M.J.R., Cundiiffe, E., Dijk, J. and Stöffler, G., 1980, Functional homology between E. coli ribosomal protein L11 and B. megaterium protein BM-L11, Molec. Gen. Genet., 180:11.PubMedGoogle Scholar
  94. Terhorst, C, Möller, W., Laursen, R. and Wittmann-Liebold, B., 1973, The primary structure of an acidic protein from 50S ribosomes of E. coli which is involved in GTP hydrolysis dependent on elongation factors G and T, Eur. J. Biochem, 34: 138.PubMedGoogle Scholar
  95. Toledo, H. and Jerez, C.A., 1985, In vitro methylation of the elongation factor EF-Tu from E.coli, FEBS Letters, 193:17.PubMedGoogle Scholar
  96. Vallari, D.S. and Rock, CO., 1985, Isolation and characterization of E. coli panthothenate permease (pan F) mutants, J. Bact., 164: 136.PubMedGoogle Scholar
  97. Van Buskirk, J.J. and Kirsch, W. M., 1978, γ-carboxyglutamic acid in eukaryotic and prokaryotic ribosomes, Biochem. Biophys. Res. Commun., 82:1329.PubMedGoogle Scholar
  98. Vandrey, J. P., Goldenberg, C.J. and Eliceiri, G. L., 1976, In vivo isotope incorporation patterns into HeLa ribosomal proteins, Biochim. Biophys. Acta, 432: 104.PubMedGoogle Scholar
  99. Wittmann, H. G., 1986, Structure of ribosomes, in: “Structure, Function and Genetics of Ribosomes”, B. Hardesty and G. Kramer, eds., Springer Series in Molecular Biology, Springer-Verlag, pp. 1–27.Google Scholar
  100. Wittmann-Liebold, B. and Pannenbecker, R., 1976, Primary structure of protein L33 from the iarge subunit of the E. coli ribosome, FEBS Letters, 68:115.PubMedGoogle Scholar
  101. Young, P. R. and Waickus, C. M., 1987, Time dependence of the methylation of myelin basic protein from bovine brain, evidence for proteinmethylarginine demethylation, Biochem. Biophys. Res. Commun., 142:200.PubMedGoogle Scholar
  102. Zimmermann, R.A., Ikeya, Y. and Sparling, P. F., 1973, Alteration of ribosomal protein S4 by mutation linked to Kasugamycin-resistance in E. coli, Proc. Natl. Acad. Sci. USA, 70:71.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jean-Hervé Alix
    • 1
  1. 1.Institut de Biologie Physico-ChimiqueParisFrance

Personalised recommendations