Enzymatic N-Methylation of Calmodulin

  • Frank L. Siegel
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


Calmodulin is a calcium-binding protein of 16,800 daltons which underwrites many of the enzyme-activating actions of calcium in eucaryotic tissues (Klee and Vanaman, 1982; Cheung, 1980). There are four calcium-binding domains in calmodulin; each domain binds one calcium with micromolar affinity. Calmodulin undergoes a conformational change when it binds calcium (Walsh, et al, 1979) and then can bind to calmodulinbinding proteins (Means and Dedman, 1980). altering their biological activities. Several calmodulin-binding proteins have been identified as important enzymes; these include cyclic nucleotide phosphodiesterase (Cheung, 1970), adenylate cyclase (Brostrom, et al, 1975), Ca2+, Mg2+ ATPase (Gopinath and Vincenzi, 1977), NAD kinase (Roberts, et al, 1984), protein kinase (Browning, et al, 1985), Phosphorylase kinase (Cohen, et al, 1978), myosin light chain kinase (Dabrowska, et al, 1978), tyrosine hydroxylase (Vuillet, 1985), phosphoprotein phosphatase (Klee, et al, 1983) and an hepatic protein methyltransferase (Siegel and Wright, 1985). Calmodulin also binds to a number of other calmodulin-binding proteins with as-yet-unknown biological activities. The distribution of calmodulin-binding proteins differs between tissues and subcellular fractions, presumably reflecting tissue and organelle differences in calmodulin activities (Means and Dedman, 1980).


Tyrosine Hydroxylase Myosin Light Chain Kinase Cyclic Nucleotide Phosphodiesterase Calmodulin Antagonist Phosphorylase Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brostrom, CO., Huang, Y.C., Breckenridge, B.M. and Wolff, D.J., 1975, Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc. Nat. Acad. Sci., 72:64PubMedCrossRefGoogle Scholar
  2. Browning, M., Huganir, R. and Greengard, P., 1985, Protein phosphorylation and neuronal function. J. Neurochem., 45:11.PubMedCrossRefGoogle Scholar
  3. Chafouleas, J.G., Bolton, W.E., Hidaka, H., Boyd, A. E. III and Means, A.R., 1982, Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 28:41.PubMedCrossRefGoogle Scholar
  4. Cheung, W.Y., 1970, Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem. Biophys. Res. Commun., 38:533.PubMedCrossRefGoogle Scholar
  5. Cheung, W.Y., 1980, Calmodulin plays a key role in cellular regulation. Science. 207:19PubMedCrossRefGoogle Scholar
  6. Cohen, P., Burchell, P., Foulkes, J.G. and Cohen, P.W.T., 1978, Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle Phosphorylase kinase., FEBS Lett., 92:287.PubMedCrossRefGoogle Scholar
  7. Crouch, C.M. and Klee, C.B., 1980, Positive cooperative binding of calcium to bovine brain calmodulin., Biochemistry, 19:3692.PubMedCrossRefGoogle Scholar
  8. Dabrowska, R., Sherry, J.M.F., Aromatorio, D.K. and Hartshorne, D.J., 1978, Modulator protein as a component of the myosin light chain kinase from chicken gizzard., Biochemistry, 17:253.PubMedCrossRefGoogle Scholar
  9. Fukami, Y., Nakamura, A. and Takeharu, K., 1986, Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells., Proc. Nat. Acad. Sci., 83:4190.PubMedCrossRefGoogle Scholar
  10. Gagnoti, C., Kelly, S., Managiello, V., Vaughn, M., Odya, C., Strittmatter, W., Hoffman, A. and Hirata, F., 1981, Modification of calmodulin function by enzymatic modification., Nature. 291:515.CrossRefGoogle Scholar
  11. Gopinath, R.M. and Vincenzi, F.F., 1977, Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of Ca2+-Mg2+ ATPase. Biochem. Biophys. Res. Commun., 77:1203.PubMedCrossRefGoogle Scholar
  12. Hergenhan, H.G., Kegel, G. and Sedlmeir, D., 1983, Ca2+-Binding proteins in crayfish abdominal muscle. Evidence for a calmodulin lacking trimethyllysine., Biochim. Biophys. Acta. 787:196.CrossRefGoogle Scholar
  13. Klee, C.B. and Vanaman, T.C., 1982, Calmodulin, in Advances in Protein Chemistry. 35:, 213PubMedGoogle Scholar
  14. Klee, C.B., Krinks, M.H., Manalan, A.S., Cohen, P. and Stewart, A.A., 1983, Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase., in Methods in Enzvmology (Means, A.R. and O’Malley, B.W., eds), 102:227.Google Scholar
  15. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680.PubMedCrossRefGoogle Scholar
  16. Lukas, T.J., Iverson, D.B., Schleicher, M. and Watterson, D.M., 1984, Structural characterization of a higher plant calmodulin, Spinacia oleracea., Plant Physiol. 75:788.CrossRefGoogle Scholar
  17. Lukas, T.J., Wiggins, M. and Watterson, D.M., 1985, Amino acid sequence of a novel calmodulin from the unicellular algae Chlamydomonas., Plant Physiol., 78:477.PubMedCrossRefGoogle Scholar
  18. Marshak, D.R., Clarke M., Roberts, D.M. and Watterson, D.M., 1984, Structural and functional properties of calmodulin from the eucaryo-tic microorganism Dictyostelium discoideum., Biochemistry. 23:2891.PubMedCrossRefGoogle Scholar
  19. Means, A.R. and Dedman, J.R., 1980, Calmodulin-an intracellular calcium receptor. Nature. 285:73PubMedCrossRefGoogle Scholar
  20. Molla, A., Kilhoffer, M.C., Ferraz, C., Audermard, E., Walsh, M.P. and Demaille, J.G., 1981, Octopus calmodulin. The trimethyllysine residue is not required for myosin light chain kinase activation., J. Biol. Chem., 256:15.PubMedGoogle Scholar
  21. Morino, H., Kawamoto, T., Miyake, M. and Kakimoto, Y., 1987, Purification and properties of calmodulin-lysine N-methyltransferase from rat brain cytosol. J. Neurochem., 48:1201.PubMedCrossRefGoogle Scholar
  22. Murtaugh, T.J., Rowe, P.M., Vincent, P.L., Wright, L.S. and Siegel, F.L., 1983, Post-translational modifications of calmodulin, in Methods in Enzymology (Means, A.R. and O’Malley, B.W., eds.) Vol. 102:158, Academic Press, New York.Google Scholar
  23. Murtaugh, T.J., Wright, L.S. and Siegel, F.L., 1986, Posttranslational modification of calmodulin in rat brain and pituitary., J. Neurochem., 47:164.PubMedCrossRefGoogle Scholar
  24. O’Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250:4007.PubMedGoogle Scholar
  25. Roberts, D.M., Burgess, W.H. and Watterson, D.M., 1984, Comparison of the NAD kinase and myosin light chain kinase activator properties of vertebrate, higher plant and algal calmodulins. Plant Physiol., 75:796.PubMedCrossRefGoogle Scholar
  26. Roberts, D.M., Rowe, P.M., Siegel, F.L., Lukas, T.J. and Watterson, D.M. 1986, Trimethyllysine and protein function. Effect of methylation and mutagenisis of lysine 115 of calmodulin on NAD kinase activation. J. Biol. Chem., 261:1491.PubMedGoogle Scholar
  27. Rowe, P.M., Murtaugh, T.J., Bazari, W.L., Clarke, M. and Siegel, F.L., 1983, Radiometric assay of S-adenosylmethionine:calmodulin (lysine) N-methy1transferase by calcium-dependent hydrophobic interaction chromatography. Anal. Biochem., 133:394.PubMedCrossRefGoogle Scholar
  28. Rowe, P.M., 1986, N-Methylation of calmodulin, Ph.D. Thesis, University of Wisconsin-Madison.Google Scholar
  29. Rowe, P.M., Wright, L.S. and Siegel, F.L., 1986, Calmodulin N-methyltransferase. Partial purification and characterization. J. Biol. Chem., 261:7060.PubMedGoogle Scholar
  30. Siegel, F.L. and Wright, L.S., 1985, Calmodulin-stimulated protein methylation in rat liver cytosol., Arch. Biochem. Biophys., 237:347.PubMedCrossRefGoogle Scholar
  31. Sitaramayya, A., Wright, L.S. and Siegel, F.L., 1980, Enzymatic methylation of calmodulin in rat brain cytosol. J. Biol. Chem. 256:8894.Google Scholar
  32. VanEldik, L.J., Grossman, A.R., Iverson, D.B. and Watterson, D.M., 1980, Isolation and characterization of calmodulin from spinach leaves and in vitro translation mixtures., Proc. Nat. Acad. Sci., 77:1912.PubMedCrossRefGoogle Scholar
  33. Vuillet, P.R., 1985, Direct activation of tyrosine hydroxylase by calmodulin., Proc. West. Pharmacol. Soc., 28:27.Google Scholar
  34. Walsh, M., Stevens, F.C., Oikawa, K. and Kay, C.M., 1979, Circular dichroism studies of native and modified Ca2+-dependent protein modulator. Canad. J. Biochem., 57:267Google Scholar
  35. Watterson, D.M., Sharief, F. and Vanaman, T.C., 1980, The complete amino acid sequence of the Ca2+ -dependent modulator protein., J. Biol. Chem., 255:962.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Frank L. Siegel
    • 1
  1. 1.University of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations