Enzymatic Methylation of Arginine Residue in Myelin Basic Protein

  • Sangduk Kim
  • Latika P. Chanderkar
  • Subrata K. Ghosh
  • Jong-Ok Park
  • Woon Ki Paik
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


Post-translational methylation of protein is a multisite reaction occurring in several amino acid side chains of specific methyl acceptor proteins, utilizing S-adenosyl-L-methionine (AdoMet)* as the methyl donor (1,2). The major sites of the reaction have been identified as the nitrogen, oxygen and sulfur atoms, all nucleophilic in nature. Several review articles on protein methylation have appeared recently (3–5) and in the preceeding chapter of this book (6). This article is focused mainly on the relationship between protein-arginine methylation and the myelin basic protein (MBP).


Myelin Basic Protein Arginine Methyl Transferase Protein Methylation Enzymatic Methylation Subacute Combine Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





myelin basic protein




NG, N’G-dimethylarginine


N2, N2-dimethylarginine


subacute combined degeneration


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kim, and W. K. Paik, Studies on the origin of ε-N-methyl-L-lysine in protein, J. Biol. Chem., 240:4629 (1965).PubMedGoogle Scholar
  2. 2.
    W. K. Paik and S. Kim, Protein methylation, Science, 174:114 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    W. K. Paik and S. Kim, Protein methylation, in: “Biochemistry: A Series of Monographs,” A Meister, ed., John Wiley & Sons, New York, 1:1 (1980).Google Scholar
  4. 4.
    W. K. Paik and S. Kim, Methylation and demethylation of protein, in: “The Enzymology of Post-Translation Modification of Proteins,” R. B. Freedman and H. C. Hawkins, eds., Academic Press, London, 2:187 (1985).Google Scholar
  5. 5.
    S. Clarke, Protein carboxyl methyltransferases: Two distinct classes of enzymes, Ann. Rev. Biochem., 54:479 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    W. K. Paik, K. S. Park, B. F. Frost, and S. Kim, Effect of enzymatic methylation on the import of in vitro synthesized apocytochrome c into mitochondria, in: “Post-Translation Modifications of Proteins and Ageing,” Plenum Publishing Co., London, in this book (1987).Google Scholar
  7. 7.
    W. K. Paik and S. Kim, Protein methylase I, J. Biol. Chem., 243:2108 (1968).PubMedGoogle Scholar
  8. 8.
    G. S. Baldwin and P. R. Carnegie, Specific enzymatic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin, Science, 171:579 (1971).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Brostoff and E. H. Eylar, Localization of methylated arginine in the Al protein from myelin, Proc. Natl. Acad. Sci. USA, 68:765 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    W. H. Lee, S. Kim, and W. K. Paik, S-Adenosylmethionine:proteinarginine methyltransferase: Purification and mechanism of the enzyme, Biochemistry, 16:78 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    E. H. Eylar, The structure and immunologic properties of myelin, Ann. N.Y. Acad. Sci., 195:481 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    E. H. Eylar, Amino acid sequence of the basic protein of the myelin membrane, Proc. Natl. Acad. Sci. USA, 67:1425 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    P. R. Carnegie, Amino acid sequence of the encephalitogenic basic protein from human myelin, Biochem. J., 123:57 (1971).PubMedGoogle Scholar
  14. 14.
    P. R. Caregie, Properties, structure and possible neuroreceptor role of the encephalitogenic protein of human brain, Nature, 229:25 (1971).CrossRefGoogle Scholar
  15. 15.
    G. E. Deibler and R. E. Martenson, Determination of methylated basic amino acids with the amino acid analyzer, J. Biol. Chem., 248:2387 (1973).PubMedGoogle Scholar
  16. 16.
    M. Reporter and J. L. Corbin, NG-NG-Dimethylarginine in myosin during muscle development, Biochem. Biophys. Res. Comm., 43:644 (1971).CrossRefGoogle Scholar
  17. 17.
    J. Karn, G. Vidali, L. C. Boffa, and V. G. Allfrey, Characterization of the non-histone nuclear proteins associated with rapidly labeled heterogeneous nuclear RNA, J. Biol. Chem., 252:7307 (1977).PubMedGoogle Scholar
  18. 18.
    P. R. Dunkley and P. R. Carnegie, Amino acid sequence of the smaller basic protein from rat brain myelin, Biochem. J141:243 (1984).Google Scholar
  19. 19.
    W. Jacobson, G. Gandy and R. L. Sidman, Experimental subacute combined degeneration of the cord in mice, J. Pathol., 109:333 (1973).Google Scholar
  20. 20.
    J. J. Dinn, D. G. Weir, S. McCann, B. Reed, P. Wilson, and J. M. Scott, Methyl group deficiency in nerve tissue: A hypothesis to explain the lesion of subacute combined degeneration, Irish J. Med. Sci., 149:1 (1980).Google Scholar
  21. 21.
    J. M. Scott, J. J. Dinn, P. Wilson and D. G. Weir, Pathogenesis of subacute combined degeneration: A result of methyl group deficiency, The Lancet, 2:334 (1981).CrossRefGoogle Scholar
  22. 22.
    G. Gandy, W. Jacobson and R. Sidman, Inhibition of a transmethylation reaction in the central nervous system — A experimental model for subacute combined degeneration of the cord, J. Physiol., 233:1 (1973).Google Scholar
  23. 23.
    W. Jacobson and G. Gandy, Tunbridge Wells, An induced neurological disease in mice — Possibly a model for subacute combined degeneration of the cord, in: “Progress in Neurological Research,” P. O. Behan and F. C. Rose eds., Pitman Medical, England, 211 (1979).Google Scholar
  24. 24.
    J. B. Lombardini, A. W. Coulter, and P. Talalay, Analogues of methionine as substrates and inhibitors of the methionine ade-nosyltransferase reaction: Deductions concerning the conformation of methionine, Mol. Pharmacol., 6:481 (1970).PubMedGoogle Scholar
  25. 25.
    A. J. Crang and W. Jacobson, The methylation in vitro of myelin basic protein by arginine methylase from mouse spinal cord, Biochem. Soc. Trans., 8:26 (1980).Google Scholar
  26. 26.
    D. H. Small, P. R. Carnegie, and R. Anderson, Cycloleucine-induced vacuolation of myelin is associated with inhibition of protein methylation, Neuroscience Lett., 21:287 (1981).CrossRefGoogle Scholar
  27. 27.
    A. J. Crang and W. Jacobson, The relationship of myelin basic protein (arginine) methyltransferase to myelination in mouse spinal cord, J. Neurochem., 39:244 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Miyake, and Y. Kakimoto, Protein methylation by cerebral tissue, J. Neurochem., 20: 859 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    G.-H. Park, L. P. Chanderkar, W. K. Paik, and S. Kim, Myelin basic protein inhibits histone-specific protein methylase I Biochem. Biophys. Acta, 874:30 (1986).CrossRefGoogle Scholar
  30. 30.
    K. S. Park, S. Y. Hong, H. W. Lee, S. Kim, and W. K. Paik, HPLC analysis of methylated amino acids: Methylated amino acids on HPLC, Arch. Biochem. Res., 9:15 (1986).Google Scholar
  31. 31.
    P. Morell, S. Greenfield, E. Constantino-Ceccarini, and H. Wisniewski, Changes in the protein composition of mouse brain myelin during development, J. Neurochem., 19:2545 (1972).PubMedCrossRefGoogle Scholar
  32. 32.
    E. Barbarese, J. H. Carson, and P. E. Braun, Accumulation of the four myelin basic proteins in mouse brain during development, J. Neurochem., 31:779 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    C. W. Campagnoni, G. D. Cary, and A. T. Campagnoni, Synthesis of myelin basic protein in the developing mouse brain, Arch. Biochem. Biophys., 190:118 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    L. P. Chanderkar, W. K. Paik, and S. Kim, Studies on myelin basic protein methylation during mouse brain development, Biochem. J., 240:471 (1986).PubMedGoogle Scholar
  35. 35.
    C. H. J. Chou, R. Shapira, and R. B. Friz, Encephalitogenic activity of the small form of mouse myelin basic protein in the SjL/J mouse, J. Immunol. 130:2183 (1983).PubMedGoogle Scholar
  36. 36.
    N. Sundarraj and S. E. Pfeiffer, Myelin basic protein arginine methyl transferase: Wide distribution among both neurogenic and non-neurogenic tissues, Biochem. Biophys. Res. Commun., 52:1039 (1973).PubMedCrossRefGoogle Scholar
  37. 37.
    W. K. Paik and S. Kim, Protein methylases during the development of rat brain, Biochem. Biophys. Acta, 313:181 (1973).CrossRefGoogle Scholar
  38. 38.
    G. M. Jones and P. R. Carnegie, Methylation of myelin basic protein by enzymes from rat brain, J. Neurochem. 23:1231 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    J. L. Guenet, Mutants of the mouse with an abnormal myelination: A review for geneticists, in: “Neurological Mutations Affecting Myelination,” N. Baumann, ed., Elsevier/North-Holland, New York (1980).Google Scholar
  40. 40.
    S. Kim, M. Tuck, M. Kim, A. T. Champagnoni, and W. K. Paik, Studies on myelin basic protein-specific protein methylase I in various dysmyelinating mutant mice, Biochem. Biophys. Res. Commun., 123:468 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    A. T. Campagnoni, C. W. Campagnoni, J.-M Bourre, C. Jacque, and N. Baumann, Cell-free synthesis of myelin basic proteins in normal and dysmyelinating mice, J. Neurochem., 42:733 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    E. H. Eylar and M. Thompson, Allergic encephalomyelitis: The physico-chemical properties of the basic protein encephalitogen from bovine spinal cord, Arch. Biochem. Biophys., 129:468 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Sangduk Kim
    • 1
  • Latika P. Chanderkar
    • 1
  • Subrata K. Ghosh
    • 1
  • Jong-Ok Park
    • 1
  • Woon Ki Paik
    • 1
  1. 1.Fels Research InstituteTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations