Enzymatic Methyl Esterification of Proteins and Ageing: The Eye Lens as a Model System for in Vivo and in Vitro Studies

  • Caterina Manna
  • Patrizia Galletti
  • Luisa del Piano
  • Adriana Oliva
  • Vincenzo Zappia
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


Mammalian eye lens represents a suitable model system for studying the age-related post-translational modifications of proteins. Eye lens is a transparent biconvex body located between the aqueous humor and vitreous body. As reported in Fig. 1, the bulk of the lens consists of a single cell type (the lens fiber) concentrically arranged by age, which derives from the epithelium located at the anterior surface of the lens, underneath the capsule. At the equator the epithelial cells cease to divide and differentiate into the ribbon-like fiber cells. Lens fiber maturation is accompanied by the loss of both nucleus and organelles; as a consequence, protein synthesis is not longer operative after differentiation. New fibers are always laid down at the periphery (cortex); thus progressively older fibers are found as one moves axially toward the center of the tissue (nucleus). Since no cell is ever sloughed from the lens, the nuclear fibers are those formed during the embryogenesis and their proteins can reach exceptionally high ages (1).


Methyl Esterification Human Lens Bovine Lens Methionine Adenosyl Transferase Aspartic Acid Racemization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Maisel, C. V. Harding, J. R. Alcalà, J. Kuszak and R. Bradley, The Morphology of the Lens, in “Molecular and Cellular Biology of the Eye Lens” H. Bloemendal ed., John Wiley and Sons, New York (1981)Google Scholar
  2. 2.
    J. S. Zigler, and J. Goosey, Aging of protein molecules: lens crystal-lins as a model system, Trends Biochem. Sci. 6:133 (1981)Google Scholar
  3. 3.
    H. J. Hoenders and H. Bloemendal, Aging of Lens Proteins, in “Molecular and Cellular Biology of the Eye Lens”, H. Bloemendal ed., John Wiley and Sons, New York (1981)Google Scholar
  4. 4.
    H. J. Hoenders and H. Bloemendal, Lens proteins and aging, J. Gerontol. 38:278 (1983)PubMedCrossRefGoogle Scholar
  5. 5.
    P. M. Masters, J. L. Bada and J. S. Zigler, Aspartic acid racemiza-tion in the human lens during aging and in cataract formation, Nature, 268:71 (1977)PubMedCrossRefGoogle Scholar
  6. 6.
    P. M. Masters, J. L. Bada and J. S. Zigler, Aspartic acid racemi-zation in heavy molecular weight crystallins and water-insoluble proteins from normal human lenses and cataracts, Proc. Natl. Acad. Sci. USA, 75:1204 (1978)PubMedCrossRefGoogle Scholar
  7. 7.
    W. W. de Jong, J. W. M. Mulders, C. E. M. Voorter, G. A. M. Berbers, W. A. Hoekman and H. Bloemendal, Post-translational modification of eye lens crystallins: crosslinking, phosphorylation and deamidation, this volumeGoogle Scholar
  8. 8.
    H. Bloemendal, The Lens Proteins, in “Molecular and Cellular Biology of Eye Lens” H. Bloemendal ed., John Wiley and Sons, New York (1981)Google Scholar
  9. 9.
    D. W. Aswad, Stoichiometric methylation of porcine adrenocortico-tropin by protein carboxyl methyltransferase requires deamidation of asparagine 25: evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues, J. Biol. Chem. 259:10714 (1984)PubMedGoogle Scholar
  10. 10.
    S. Clarke, Protein methylation at abnormal aspartyl residues, in “Biological Methylation and Drug Design”, R. T. Borchardt, C. R. Creveling and P. M. Ueland eds., The Humana Press, Clifton (1986)Google Scholar
  11. 11.
    A. Di Donato, P. Galletti and G. D’Alessio, Selective deamidation and enzymatic methylation of seminal ribonuclease, Biochemistry 25:8361 (1986)PubMedCrossRefGoogle Scholar
  12. 12.
    P. Galletti, D. Ingrosso, A. Nappi, V. Gragnaniello, A. lolascon and L. Pinto, Increased methyl esterification of membrane proteins in aged red blood cells, Eur. J. Biochem. 135:25 (1983)PubMedCrossRefGoogle Scholar
  13. 13.
    J. R. Barber and S. Clarke, Membrane protein carboxyl methylation increases with human erythrocytes age, J. Biol. Chem. 258:1189 (1983)PubMedGoogle Scholar
  14. 14.
    S. Clarke, The role of aspartic acid and asparagine residues in the aging of erythrocyte proteins: cellular metabolism of racemized and isomerized forms by methylation reactions, “Cellular and Molecular Aspects of Aging: the Red Cell as a Model”, J. Eaton, ed. A. R. Liss, New York (1985)Google Scholar
  15. 15.
    P. N. McFadden, J. Horwitz and S. Clarke, Protein carboxyl methyl transferase from cow eye lens, Biochem. Biophys. Res. Commun. 113:418 (1983).CrossRefGoogle Scholar
  16. 16.
    P. N. McFadden and S. Clarke, Protein carboxyl methyltransferase and methyl acceptor proteins in aging and cataractous tissue of the human eye lens, Mech. of Ageing and Dev., 34:91 (1986).CrossRefGoogle Scholar
  17. 17.
    P. N. McFadden and S. Clarke, Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of aged membrane proteins, Proc. Natl. Acad. Sci. USA 84:2595 (1987)PubMedCrossRefGoogle Scholar
  18. 18.
    P. Galletti, A. Ciardiello, D. Ingrosso, A. Di Donato and G. D’Alessio, Repair of isopeptide bonds by protein carboxyl methyltransferase: seminal RNase as a model system, Biochemistry, submitted for publicationGoogle Scholar
  19. 19.
    P. N. McFadden and S. Clarke, Methylation at D-aspartyl residues in red cells: a possible step in the repair of aged membrane proteins, Proc. Natl. Acad. Sci. USA 79:2469 (1982)CrossRefGoogle Scholar
  20. 20.
    L. S. Brunauer and S. Clarke, Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes, J. Biol. Chem. 261:12538 (1986)PubMedGoogle Scholar
  21. 21.
    D. W. Aswad and B. A. Johnson, The unusual substrate specificity of eukaryotic protein carboxyl methyltransferase, Trends Biochem. Sci. 12:155 (1987)Google Scholar
  22. 22.
    D. Ingrosso, C. Manna, P. Galletti, F. Sica, S. Capasso, P. Pucci and G. Marino, Studies on enzymatic methyl esterification of synthetic tripeptides: structural requirements of the peptide substrate, Eur. J. Biochem., submitted for publicationGoogle Scholar
  23. 23.
    P.J.M. van den Oetelaar, L.E.C. Van Beijsterveldt, J.R.C.M. Van Beckhoven and H. J. Hoenders, Detection of aspartic acid enantiomers by chiral capillary gas chromatography, determination of in vivo ra-cemization and reduction of metal-induced background, J. Chromatog. 368:135 (1986)CrossRefGoogle Scholar
  24. 24.
    C. Manna, P. Galletti, P. J. M. van den Oetelaar and H. J. Hoenders Does protein carboxyl methyltransferase repair racemized aspartyl residues in proteins?, submitted for publicationGoogle Scholar
  25. 25.
    P. M. Helfman and J. L. Bada, Aspartic acid racemization in dentine as a measure of ageing, Nature 262:279 (1976)PubMedCrossRefGoogle Scholar
  26. 26.
    P. M. Helfman and J. L. Bada, Aspartic acid racemization in tooth enamel from living humans, Proc. Natl. Acad. Sci. USA 72:2891 (1975)PubMedCrossRefGoogle Scholar
  27. 27.
    A. M. Geller, M. Y. S. Kotb, H. M. Jernigan, J.R. and N. M. Kredich, Purification and properties of rat lens methionine adenosyltransfe-rase, Exp. Eye Res. 43:997 (1986)PubMedCrossRefGoogle Scholar
  28. 28.
    V. Zappia, P. Galletti, M. Porcelli, C. Manna and F. Delia Ragione High-performance liquid chromatography separation of natural adenosylsulfur compounds, J. Chromatog. 189:399 (1980)CrossRefGoogle Scholar
  29. 29.
    W. Paik and S. Kim, “Protein Methylation”, John Wiley and Sons, New York (1980)Google Scholar
  30. 30.
    V. Zappia, C. R. Zydek-Cwick and F. Schlenk, The specificity of S-adenosylmethionine derivatives in methyl transfer reactions J. Bilo. Chem. 211:4499 (1969)Google Scholar
  31. 31.
    S. Clarke, Protein carboxyl methyltransferases: two distinct classes of enzymes, Ann. Rev. Biochem. 54:479 (1985)PubMedCrossRefGoogle Scholar
  32. 32.
    A. Di Donato, P. Galletti and G. D’Alessio, Selective deamidation and enzymatic methylation of seminal ribonuclease, Biochemistry 25:8361 (1986)PubMedCrossRefGoogle Scholar
  33. 33.
    L. T. Kremzner, D. Roy and A. Spector, Polyamines in normal and cata-ractous human lenses: evidence for post-translational modification Exp. Eye Res. 37: 649 (1983)PubMedCrossRefGoogle Scholar
  34. 34.
    S. Maekawa, H. Hibasami, T. Tsukada, S. Furusako, K. Nakashima and M. Yokoyama, Induction of spermidine/spermine N -acetyltransferase in needle-punctured rat lens as a model of traumatic cataract, Biochim. Biophys. Acta 883:501 (1986)Google Scholar
  35. 35.
    P. S. Zelenka, D.C. Beebe and D. E. Feagans, Transmethylation of phosphatidylethanolamine: an initial event in embryonic chicken lens fiber cell differentiation, Science 217:1265 (1982)PubMedCrossRefGoogle Scholar
  36. 36.
    K. L. Oden and S. Clarke, S-adenosyl-L-methionine synthetase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels, Biochemistry 22:2978 (1983)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Caterina Manna
    • 1
  • Patrizia Galletti
    • 1
  • Luisa del Piano
    • 1
  • Adriana Oliva
    • 1
  • Vincenzo Zappia
    • 1
  1. 1.Department of Biochemistry of Macromolecules, 1st Medical SchoolUniversity of NaplesNaplesItaly

Personalised recommendations