Substrates of Protein Carboxyl Methyltransferase: Kinetics and Mechanism of their Formation

  • Piet J. M. van den Oetelaar
  • Herman J. Hoenders
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


Protein carboxyl methyltransferase (PCM, EC is an ubiquitous enzyme capable of methylating a great variety of proteins. The reaction that it catalyzes takes place in a sub-stoichiometric way. This puzzling fact was explained when Clarke and Aswad and their co-workers reported that PCM only recognizes D-aspartic and L-isoaspartic residues (for review see reference 1).


Human Lens Native Protein Structure Cyclic Imide Adjacent Amino Acid Aspartic Acid Racemization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Aswad, and B. A. Johnson, The unusual substrate specificity of eukaryotic protein carboxyl methyltransferase, Trends Biochem. Sci. 155 (1987).Google Scholar
  2. 2.
    J. L. Bada, Invivo racemization in mammalian proteins, Meth. Enzymol. 106:98 (1984).PubMedGoogle Scholar
  3. 3.
    P. M. Masters-Helfman, J. L. Bada, and J.S. Zigler, Aspartic acid racemization in the human lens during ageing and in cataract formation, Nature (London) 268:71 (1977).CrossRefGoogle Scholar
  4. 4.
    W. H. Garner, and A. Spector, Racemization in human lens: Evidence of rapid insolubilization of specific polypeptides in cataract formation, Proc. Natl. Acad. Sci. U.S.A. 75:3618 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    H. J. Hoenders, and H. Bloemendal, Lens proteins and aging, J. Gerontol. 38:278 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    D. W. Aswad, Determination of D- and L-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde, Anal. Biochem. 137:405 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    P. J. M. van den Oetelaar, J. R. C. M. van Beckhoven, and H. J. Hoenders, Analysis of aspartic acid racemization: Evaluation of a chiral capillary gas chromatographic and a diastereomeric high-performance liquid chromatographic method, J. Chromatogr. 388:441 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    G. G. Smith, and R. C. Evans, The effect of structure and conditions on the rate of racemization of free and bound amino acids, in: “Biogeochemistry of Amino Acids”, P. E. Hare, T. C. Hoering, and K. King, eds, J. Wiley and Sons, New York (1980).Google Scholar
  9. 9.
    M. Friedman, and P. M. Masters, Kinetics of racemization of amino acid residues in casein, J. Food Sci. 47:760 (1982).CrossRefGoogle Scholar
  10. 10.
    A. Neuberger, Stereochemistry of amino acids, Adv. Prot. Chem. 4:298 (1948).Google Scholar
  11. 11.
    P. Bornstein, and G. Balian, G., Cleavage at Asn-Gly bonds with hydroxylamine, Meth. Enzymol. 47:132 (1977).Google Scholar
  12. 12.
    S. A. Bernhard, Nucleophilic displacement reactions at ester and thiolester bonds, Ann. N. Y. Acad. Sci. 421:28 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    L. J. Summers, G. Wistow, N. M. Narebor, D. S. Moss, P. F. Lindley, C. Slingsby, T.L. Blundell, H. Bartunik, and K. Bartels, K., X-ray studies of the lens specific proteins: the crystallins, Pept. Protein Rev. 3:147 (1984).Google Scholar
  14. 14.
    T. Geiger, and S. Clarke, Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides, J. Biol. Chem. 262:785 (1987).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Piet J. M. van den Oetelaar
    • 1
  • Herman J. Hoenders
    • 1
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations