Post-Translational Modifications of Cellular Proteins by Polyamines and Polyamine-Derivatives

  • Mauro Piacentini
  • Maria Paola Ceru’-Argento
  • Maria Grazia Farrace
  • Francesco Autuori
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


The aliphatic polyamines putrescine, spermidine and spermine are contituents of all living organisms. Prokaryotes and eukaryotes are able to synthesize putrescine and spermidine, while spermine is confined to nucleated cells (1–4). The physiological role of these amines is not completely understood, although many studies have clarified their metabolism and some relevant aspects of their regulation (1–4). Polyamine synthesis often precedes that of DNA, RNA and proteins indicating their possible involvement in the regulation of these events (2). In fact the enzyme activities of polyamine biosynthesis and catabolism and the amine concentration were found to vary in rapidly proliferating tissues and during cellular differentiation both in vivo and in vitro (1–4).


Ornithine Decarboxylase Amine Oxidase Diamine Oxidase Polyamine Metabolism Polyamine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Heby, Role of polyamines in the control of cell proliferation and differentiation, Differentiation 19:1 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    A.E. Pegg, and P.P. McCann, Polyamine metabolism and function Am. J. Physiol. 243:C212 (1982).PubMedGoogle Scholar
  3. 3.
    C.W. Tabor, and H. Tabor, Polyamines, Ann. Rev. Biochem. 53:749 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    A.E. Pegg, Recent advances in the biochemistry of the polyamines in eukaryotes Biochem J. 234:249 (1986).PubMedGoogle Scholar
  5. 5.
    O.M. Rennert, W.Y. Chan, and G. Griesmann, Polyamine-peptide conjugates: proposed function Physiol. Chem. Physics 12:441 (1980).Google Scholar
  6. 6.
    G.H. Williams-Ashman, Transglutaminase and the clotting of mammalian seminal fluids Mol. Cell. Biochem. 58:51 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    E.S. Canellakis, D. Viceps-Madore, D.A. Kyriakidis, and J.S. Heller, The regulation and function of ornithine decarboxylase and of the polyamine, in:“Current Topics in Cellular Regulation,” B.L. Horecker and E.R. Stadtman, eds., Academic Press, New York (1979).Google Scholar
  8. 8.
    N. Seiler, F.N. Bolkenius, and O.M. Rennert, Interconversion, catabolism and elimination of the polyamines, Med. Biol. 5:334 (1981).Google Scholar
  9. 9.
    E. Holtta, Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase, Biochemistry 16:91 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Seiler, and M.J. Al-Therib, Putrescine catabolism in mammalian brain, Biochem. J., 144:29 (1974).PubMedGoogle Scholar
  11. 11.
    G. Quash, T. Keolouangkhot, L. Gazzolo, H. Ripoll, and S. Saez, Diamine oxidase and polyamine oxidase activities in normal and trasformed cells Biochem. J. 177:275 (1979).PubMedGoogle Scholar
  12. 12.
    P.S. Mamont, P. Bohlen, P.P. McCann, P. Bey, F. Schuber, and C. Tardif, α-Methylornithine a potent competitive inhibitor of ornithine decarboxylase blocks proliferation of rat hepatoma cells in culture, Proc. Natl. Acad. Sci. USA 73:1626 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    P.S. Mamont, M.C. Duchesne, J. Grove, and P. Bey, Anti-proliferative properties of DL-α-difluoromethylornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase, Biochem. Biophys. Res. Commun. 81:58 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    G.H. Williams-Ashmann, and A. Schenone, Methylglyoxal bis (guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylase, Biochem. Biophys. Res. Commun. 46:288 (1972).CrossRefGoogle Scholar
  15. 15.
    A. Kallio, and J. Janne, Role of diamine oxidase during the treatment of tumor-bearing mice with combinations of polyamine anti-metabolite, Biochem. J. 212:895 (1983).PubMedGoogle Scholar
  16. 16.
    W.G. Bardsley, Inhibitors of copper amine oxidases, in “Structure and functions of amine oxidases,” B. Mondovi’, ed., CRC Press Inc., Boca Raton (1985).Google Scholar
  17. 17.
    M.H. Park, H.L. Cooper, and J.E. Folk, The biosynthesis of protein--bound hypusine (Nε-(4-Amino-2-hydroxybutyl) Lysine), J. Biol. Chem. 257:7217 (1982).PubMedGoogle Scholar
  18. 18.
    H.L. Cooper, M.H. Park, and J.E. Folk, Posttranslational formation of hypusine in a single major protein occurs generally in growing cells and is associated with activation of lymphocyte growth, Cell 29:791 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Nakajima, Y. Kakimoto, N. Tsuji, and H. Konishi, Occurrence and formation of γ-glutamylputrescine in mammalian brain, J. Neurochem. 26:115 (1976).PubMedGoogle Scholar
  20. 20.
    M.H. Park, S.I. Chung, H.L. Cooper, and J.E. Folk, The mammalian hypusine-containing protein eukaryotic initiation factor 4D. Structural homology of the protein from several species, J. Biol. Chem. 259:4563 (1984).PubMedGoogle Scholar
  21. 21.
    A. Abbruzzese, M.I. Park, and J.E. Folk, Deoxyhypusine hydroxylase from rat testis, J. Biol. Chem. 261:3085 (1986).PubMedGoogle Scholar
  22. 22.
    H.L. Cooper, M.H. Park, J.E. Folk, B. Safer, and R. Braverman, Identification of the hypusine-containing protein Hy+ as translation initiation factor eIF-4D, Proc. Natl. Acad. Sci. USA 80:1854 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    J.E. Folk, Transglutaminases, Annu. Rev. Biochem. 49:517 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    J.E. Folk, M.H. Park, S.I. Chung, J. Schrode, E.P. Lester, and H.L. Cooper, Polyamines as physiological substrates for transglutaminases, J. Biol. Chem. 255:3695 (1980).PubMedGoogle Scholar
  25. 25.
    J.E. Folk, Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl)lysine bond formation, _in “Advances in enzymology and related areas in molecular biology,” A. Meister, ed., Wiley and Sons, New York (1983).Google Scholar
  26. 26.
    S. Beninati, M. Piacentini, M.P. Argento-Ceru’, S. Russo-Caia, and F. Autuori, Presence of di- and polyamines covalently bound to protein in rat liver, Biochim. Biophys. Acta 841:120 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    H.G. Williams-Ashman, and Z.N. Canellakis, Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanism and potential physiological significance, Physiol. Chem. Physics 12:457 (1980).Google Scholar
  28. 28.
    D.H. Russell, Posttranslational modification of ornithine decarboxylase by its product putrescine, Biochem. Biophys. Res. Commun. 99:1167 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    K.F.F. Scott, F.L. Meyskens, and D.H. Russell, Retinoids increase transglutaminase activity and inhibit ornithine decarboxylase activity in Chines hamster ovary cells and in melanoma cells stimulated to differentiate, Proc. Natl. Acad. Sci. USA 79:4093 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Piacentini, C. Sartori, S. Beninati, A.M. Bargagli, and M.P. Argento-Ceru’, Ornithine decarboxylase, transglutaminase, diamine oxidase and total diamines and polyamines in maternal liver and kidney throughout rat pregnancy, Biochem. J. 234:435 (1986).PubMedGoogle Scholar
  31. 31.
    F. Leuven, Human α-macroglobulin, Mol. Cell. Biochem. 58:121 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Fink, and J.E. Folk, γ-Glutamylamine Cyclotransferase, Methods Enzymol. 94:347 (1983).PubMedGoogle Scholar
  33. 33.
    D.D. Clark, M.J. Mycek, A. Neidle, and H. Waelsch, The incorporation of amines into protein, Arch. Biochem. Biophys. 79:338 (1959).CrossRefGoogle Scholar
  34. 34.
    M.H. Park, H.L. Cooper, and J.E. Folk, Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor, Proc. Natl. Acad. Sci. USA 78:2869 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    K.Y. Chen, An 18,000-dalton protein metabolically labeled by polyamine in various mammalian cell lines, Biochim. Biophys. Acta 756:395 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    E.W. Gerner, P.S. Mamont, A. Bernhardt, and N. Siat, Posttranslational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells, Biochem. J, 239: 12 (1986).Google Scholar
  37. 37.
    R.F. Duncan, and J.W.B. Hershey, Changes in eIF-4D hypusine modification or abundance are not correlated with translational repression in Hela cells, J. Biol. Chem. 261:12903 (1986).PubMedGoogle Scholar
  38. 38.
    S. Beninati, M. Piacentini, and F. Autuori, Post-translational modification of glycerol insoluble proteins by [3H]-putreseine in CHO cells, Biol. Chem. Hoppe-Seyler 367:374S(1986).Google Scholar
  39. 39.
    M.K. Haddox, and D. Haddock Russell, Differential conjugation of polyamines to calf nuclear and nucleolar proteins, J. Cell. Physiol. 109:447 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    M.K. Haddox, and D. Haddock Russell, Increased nuclear conjugated polyamines and transglutaminase during liver regeneration, Proc. Natl. Acad. Sci. USA, 78:1712 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    L. Cariello, J. Wilson, and L. Lorand, Activation of transglutaminase during embryonic development, Biochemistry 23:6843 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    Z.N. Canellakis, P.K. Bondy, and A.A. Infante, Spermidine is bound to a unique protein in early sea urchin embryos, Proc. Natl. Acad. Sci. USA 82:7613 (1985).PubMedCrossRefGoogle Scholar
  43. 43.
    H. Hennings, D. Michael, C. Cheng, P. Steinert, K. Holbrook, and S.H. Yuspa, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    L. Fesus, E.F. Szucs, K.E. Barrett, D.D. Metcalfe, and J.E. Folk, Activation of transglutaminase and production of protein-bound γ-glutamylhistamine in stimulated mouse mast cells, J. Biol. Chem. 260:13771 (1985).PubMedGoogle Scholar
  45. 45.
    J. Schindler, Retinoids, polyamines and differentiation, in “Retinoids and cell differentiation,” M.I. Sherman, ed., CRC Press, Boca Raton (1986).Google Scholar
  46. 46.
    K. Kapyaho, and K.J. Janne, Stimulation of melanotic expression in murine melanoma cells exposed to polyamine antimetabolites, Biochem. Biophys. Res. Commun. 113:18 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    O. Heby, S.M. Oredsson, I. Olsson, and L.J. Marton, A role for the polyamines in mouse embryonal carcinoma (F9 and PCC3) cell differentiation but not in human promyelocytic leukemia (HL-60) cell differentiation, Adv. Polyamine Res. 4:727 (1983).Google Scholar
  48. 48.
    J. Schindler, M. Kelly, and P.P. McCann, Inhibition of ornithine decarboxylase induces embryonal carcinoma cell differentiation, Biochem. Biophys. Res. Commun. 114:410 (1983).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Green, The keratinocyte as differentiated cell type, The Harvey Lectures series 74:101 (1979).Google Scholar
  50. 50.
    J. Kubilus, and H.P. Baden, Isopeptide bond formation in epidermis, Mol. Cell. Biochem. 58:129 (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    L.L. Peterson, and K.D. Wuepper, Epidermal and hair follicle transglutaminases and crosslinking in skin, Mol. Cell. Biochem. 58:99 (1984).PubMedCrossRefGoogle Scholar
  52. 52.
    Z. Nakos-Canellakis, L.L. Marsh, P. Young, and P.K. Bondy, Polyamine metabolism in differentiating friend erythroleukemia cells, Cancer Res. 44:3841 (1984).Google Scholar
  53. 53.
    A.Y. Jeng, U. Lichti, J.E. Strickland, and P.M. Blumberg, Similar effect of phospholipase C and phorbol ester tumor promoters on primary mouse epidermal cells, Cancer Res. 45:5714 (1985).PubMedGoogle Scholar
  54. 54.
    M. Piacentini, N. Martinet, S. Beninati, S Strong, and J.E. Folk, Di-and polyamines metabolism during mouse epidermal cell differentiation, J. Cell Biol. 103:327a(1986).Google Scholar
  55. 55.
    R.T. Ambron, and L.T. Kremzner, Post-translational modification of neuronal proteins: evidence for transglutaminase activity in R2, the giant cholinergis neuron of Aplysia, Proc. Natl. Acad. Sci. USA 79:3442 (1982).PubMedCrossRefGoogle Scholar
  56. 56..
    M. Piacentini, and S. Beninati, γ-glutamylamine derivatives in isolated rat hepatocytes protein, paper in preparation.Google Scholar
  57. 57..
    E.T. Cocuzzi, M. Piacentini, S. Beninati, and S.I. Chung, Apolipoprotein are substrates for transglutaminase, Atherosclerosis in press.Google Scholar
  58. 58.
    R.B. Maccioni, and N.W. Seeds, Transglutaminase and neuronal differentiation, Mol. Cell. Biochem. 69:161 (1986).PubMedCrossRefGoogle Scholar
  59. 59.
    K.Y. Chen, Transglutaminase catalyzed incorporation of putrescine into surface proteins of mouse neuroblastoma cells, Mol. Cell. Biochem. 58:91 (1984).PubMedCrossRefGoogle Scholar
  60. 60.
    G.A. Quash, A. Nivelaau, M. Aupoix, and M. Greenland, Immunolatex visualisation of cell surface Forssman and polyamine antigens, Exp. Cell Res. 98:253 (1976).PubMedCrossRefGoogle Scholar
  61. 61.
    K.H. Lee-Hsu, and H. Friedman, Dexamethasone inhibition of DMSO induced transglutaminase activity and differentiation of leukemic cells, Proc. Soc. Exp. Biol. Med. 175:205 (1984).CrossRefGoogle Scholar
  62. 62.
    P.J. Birckbichler, G.R. Orr, M.K. Patterson, E. Conway, and H.A. Carter, Increase in proliferative markers after inhibition of transglutaminase, Proc. Natl. Acad. Sci. USA 78:5005 (1981).PubMedCrossRefGoogle Scholar
  63. 63.
    P.J. Birckbichler, and M.K. Patterson, Cellular transglutaminase, growth and trasformation Ann. N.Y. Acad. Sci. 312:354 (1978).PubMedCrossRefGoogle Scholar
  64. 64.
    P. Pohjanpelto, I. Virtanen, and E. Holtta, Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine-auxotrophic CHO cells, Nature 293:475 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Mauro Piacentini
    • 1
  • Maria Paola Ceru’-Argento
    • 2
  • Maria Grazia Farrace
    • 1
  • Francesco Autuori
    • 1
  1. 1.Dipartimento di BiologiaII Universita’ di Roma (Tor Vergata)Italy
  2. 2.Dipartimento di Scienze e Tecnologie Biomediche e di BiometriaUniversita’ de L’AquilaItalia

Personalised recommendations