Searching For the Function of Tissue Transglutaminase: Its Possible Involvement in the Biochemical Pathway of Programmed Cell Death

  • Laszlo Fesus
  • Vilmos Thomazy
Part of the Advances in Experimental Medicine and Biology book series (NATO ASI F, volume 231)


Transglutaminases are Ca2+-dependent enzymes occurring widely in cells and body fluids (Folk and Chung, 1973; Chung, 1975; Folk, 1980). They catalyze the formation of ε(γ-glutamyl)lysine cross-links between proteins and γ-glutamylamine derivatives in proteins providing a potentially and functionally significant posttranslational modification (Folk and Finlayson, 1977; Folk et al., 1980). Three distinct forms have been studied most extensively, namely the catalytic (‘a’) subunit of blood coagulation factor XIII, the tissue transglutaminase and the keratinocyte enzyme. Studying the coagulation and the tissue enzyme remarkable progress has been made in our understanding of the catalytic mechanism of transglutaminases (Folk, 1983).


Factor Xiii Tissue Transglutaminase High Molecular Weight Polymer Tissue Culture Condition Transglutaminase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amenta, J. S., Brocher, S. C., and Mehta, J., 1986, Relationship between protein turnover and cell death in high density 3T3 cells, Acta Biol. Hung., 37:155, abstractGoogle Scholar
  2. Azari, P., Rahim, I., and Clarkson, D. P., 1981, Transglutaminase activity in normal and hereditary cataractous rat lens and its partial purification, Curr. Eye Res., 1:436CrossRefGoogle Scholar
  3. Bale, M. D., and Mosher, D. F., 1986, Thrombospondin is a substrate for blood coagulation factor XIIIa, Biochemistry, 25:5667PubMedCrossRefGoogle Scholar
  4. Baskova, I., P., and Nikonov, G. I., 1985, Destabilize — an enzyme of medicinal leech salivary gland secretion that hydrolyzes isopeptide bonds in stabilized fibrin, Biokhimiva, 50:424Google Scholar
  5. Beninati, S., Piacentini, M., Argento-Ceru, M. P., Russo-Caia, S., and Autuori, F., 1985, Presence of di-, and polyamines covalently bound to protein in rat liver, Biochim. Biophys. Acta, 841:120PubMedCrossRefGoogle Scholar
  6. Berntorp, E., Seiving, B., and Stenberg, P., 1985, Characterization of transglutaminases in normal and malignant human leukocytes, Scand. J. Haematol., 34:71PubMedCrossRefGoogle Scholar
  7. Birckbichler, P. J., Orr, G. R., Patterson, M. K., Jr., Conway, E., and Carter, H. A., 1981, Increase in proliferative markers after inhibition of transglutaminase, Proc. Natl. Acad. Sci. U.S.A., 78:5005PubMedCrossRefGoogle Scholar
  8. Bowness, M. J., Folk, J. E., and Timol, R., 1987, Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen, J. Biol. Chem., 262:1022PubMedGoogle Scholar
  9. Bungay, P. J., Owen, R. A., Coutts, I. C., Griffin, M., 1986, A role for transglutaminase in glucose-stimulated insulin release from the pancreatic β-cell, Biochem. J., 235:269PubMedGoogle Scholar
  10. Bursch, W., Laner, B., Timmermann-Trosiener, I., Barthel, G., Schuppler, J., and Schulte-Hermann, R., 1984, Controlled death (apoptosis) of normal putative preneoplastic cells in rat liver following withdrawal of tumor promoters, Carcinogenesis. 5:453PubMedCrossRefGoogle Scholar
  11. Bursch, W., Taper, H. S., Laner, B., and Schulte-Hermann, R., 1985, Quantitative histological and histochemical studies on the occurrence and stages of controlled cell death (apoptosis) during repression of rat hyperplasia, Virchows Arch., 50:153Google Scholar
  12. Chang, S. K., and Chung, S. I., 1986, Cellular transglutaminase. The particulate associated transglutaminase from chondrosarcoma and liver: Partial purification and characterization, J. Biol. Chem., 261:8112PubMedGoogle Scholar
  13. Chung, S. I., 1975, Multiple molecular forms of transglutaminases in human and the guinea pig, in: “Isozymes,” C. L. Markert, ed., Academic Press, New York, 1:259Google Scholar
  14. Chung, S. I., and Folk, J. E., 1972, Transglutaminase from hair follicle of guinea pig, Proc. Natl. Acad. Sci. U.S.A., 69:303PubMedCrossRefGoogle Scholar
  15. Cocuzzi, E. T., and Chung, S. I., 1986, Cellular transglutaminase. Lung-matrix associated transglutaminase: Characterization and activation by sulfhydryls, J. Biol. Chem., 261:8122PubMedGoogle Scholar
  16. Cohen, J. C., Duke, R. C., 1984, Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol., 132:38PubMedGoogle Scholar
  17. Columbano, A., Ledda-Columbano, G. M., Coni, P. P., Faa, G., Liquori, C., Santa Cruz, G., and Pani, P., 1985, Occurrence of cell death (apoptosis) during the involution of liver hyperplasia, Lab. Invest., 52:670PubMedGoogle Scholar
  18. Davies, P. J. A., Davies, D. R., Levitzky, A., Maxfield, F. R., Milhaud, P., Willingham, M. C., and Pastan, I. H., 1980, Transglutaminase is essential in receptor-mediated endocytosis of α2-macroglobulin and polypeptide hormones, Nature, 283:162PubMedCrossRefGoogle Scholar
  19. Davies, P. J. A., Cornwell, M. M., Johnson, J. D., Reggioni, A., Myers, M., and Murtaugh, M. P., 1984, Studies on the effects of dansylcadaverine and related compounds on receptor-mediated endocytosis in cultured cells, Diabetes Care, 7(Suppl.1):35PubMedGoogle Scholar
  20. Davies, P. J. A., Murtaugh, M. P., Moore, W. T., Johnson, G. S., and Lucas, D., 1985, Retinoic acid-induced expression of tissue transglutaminase in human promyelocytic leukemia (HL-60) cells, J. Biol. Chem., 260:5166PubMedGoogle Scholar
  21. Dell’Orco, R. T., Anderson, L. E., Conway, E., Birckbichler, P. J., 1985, Variable transglutaminase activity in human diploid fibroblasts during in vitro senescence, Cell Biol. Internatl. Rep., 9:945CrossRefGoogle Scholar
  22. Fesus, L., and Arato, G., 1986, Quantitation of tissue transglutaminase by a sandwich ELISA system, J. Immunol. Meth., 94:131CrossRefGoogle Scholar
  23. Fesus, L., Arato, G., Kavai, M., Yancey, S. T., 1987, Tumor growth and transglutaminases, in “Haemostasis and Cancer” L. Muszbek, ed., CRC Press Inc., Boca Raton, FloridaGoogle Scholar
  24. Fesus, L., Erdei, A., Sandor, M., and Gergely, J., 1982, The influence of tissue transglutaminase on the function of Fc receptors, Mol. Immunol., 19:39PubMedCrossRefGoogle Scholar
  25. Fesus, L., Falus, A., Erdei, A., and Laki, K., 1981, Human β2-microglobulin is a substrate of tissue transglutaminase: Polymerization in solution and on the cell surface, J. Cell. Biol., 89:706PubMedCrossRefGoogle Scholar
  26. Fesus, L., Harsfalvi, J., Horvath, A., and Sandor, M., 1984, Transglutaminase activation and receptor signaling: Concepts and realities, Mol. Immunol., 21:1161PubMedCrossRefGoogle Scholar
  27. Fesus, L., Metsis, M. L., Muszbek, L., and Koteliansky, V. E., 1986, Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments, Eur. J. Biochem., 154:371PubMedCrossRefGoogle Scholar
  28. Fesus, L., Sandor, M., Horvath, L. I., Bagyinka, C., Erdei, A., and Gergely, J. 1981, Immune-complex-induced transglutaminase activation: Its role in the Fc-receptor-mediated transmembrane effect on peritoneal macrophages, Mol. Immunol., 18:633PubMedCrossRefGoogle Scholar
  29. Fesus, L., Szucs, E. F., Barrett, K. E., Metcalfe, D. D., and Folk, J. E., 1985, Activation of transglutaminase and production of protein-bound γ-glutamylhistamine in stimulated mouse mast cells, J. Biol. Chem., 260:13771PubMedGoogle Scholar
  30. Fesus, L., and Thomazy, V., 1987, Apoptosis of hepatocytes in vivo is associated with the induction of tissue transglutaminase, submittedGoogle Scholar
  31. Finley, D., and Varshavsky, A., 1985, The ubiquitin system: functions and mechanisms, Trends Biochem. Sci., Sept.:343Google Scholar
  32. Folk, J. E., 1980, Transglutaminases, Annu. Rev. Biochem., 49:517PubMedCrossRefGoogle Scholar
  33. Folk, J. E., 1983, Mechanism and basis for specificity of transglutaminase-catalyzed ε(γ-glutamyl)lysine formation, in: “Advances in Enzymology and Related Areas in Molecular Biology,” A. Meister, ed., John Wiley and Sons, New YorkGoogle Scholar
  34. Folk, J. E., and Chung, S. I., 1973, Molecular and catalytic properties of transglutaminases, Adv. Enzvmol., 38:109Google Scholar
  35. Folk, J. E., and Finlayson, J. S., 1977, The ε(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminases, Adv. Protein Chem., 31:1PubMedGoogle Scholar
  36. Folk, J. E., Park, M. H., Chung, S. I., Schrode, J., Lester, E. P., and Cooper, H. L., 1980, Polyamines as physiological substrates for transglutaminases, J. Biol. Chem., 255:3695PubMedGoogle Scholar
  37. Francis, R. T., McDonagh, J., and Mann, K. G., 1986, Factor V is a substrate for the transamidase factor XIII, J. Biol. Chem., 261:9787PubMedGoogle Scholar
  38. Gilad, G. M., Varon, L. E., and Gilad, V. H., 1985, Calcium-dependent transglutaminase of rat sympathetic ganglion in development and after nerve injury, J. Neurochem., 44:1385PubMedCrossRefGoogle Scholar
  39. Goldman, R., 1985, Synergism and antagonism in the effects of 1,25-dihydroxyvitamin D3, retinoic acid, dexamethasone, and a tumor-promoting phorbol ester on the functional capability of P388D1 Cells: Phagocytosis and transglutaminase activity, Cancer Res., 45:3118PubMedGoogle Scholar
  40. Gomis, R., Sener, A., Mallaisse-Lagae, F., and Mallaisse, W. J., 1983, Transglutaminase activity in pancreatic islet, Biochim. Biophys. Acta. 760:384PubMedCrossRefGoogle Scholar
  41. Green, H., 1980, The keratinocyte as differentiated cell type, Harvey Lectures, Series, 74:101Google Scholar
  42. Griffin, M., 1987, Transglutaminase: A potential Ca2+ target in the pancreatic β-cell during glucose stimulated insulin release, Noble Conferencein Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  43. Grundmann, U., Amann, E., Zettlmeissl, G., and Kupper, H. A., Characterization of cDNA coding for human factor XIIIa, Proc. Natl. Acad. Sci. U.S.A.. 83:8024Google Scholar
  44. Hada, M., Kaminski, M., Bockenstedt, P., and McDonagh, J., 1986, Covalent crosslinking of von Willebrand factor to fibrin, Blood, 68:95PubMedGoogle Scholar
  45. Hand, D., Bungay, P. J., Elliott, B. M., and Griffin, M., 1985, Activation of transglutaminase at calcium levels consistent with a role for this enzyme as a calcium receptor protein, Biosc. Rep., 5:1079CrossRefGoogle Scholar
  46. Harsfalvi, J., Fesus, L., Rak., K., Boda, Z., and Loewy, A., The presence of a covalently cross-linked matrix in human platelets, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  47. Henrikson, P., Becker, S., Lynch, G., and McDonagh, J., 1985, Identification of intracellular factor XIII in human monocytes and macrophages, J. Clin. Invest., 76:528CrossRefGoogle Scholar
  48. Hsu, K.H., and Friedman, H., 1983, Dimethylsulfoxide-induced transglutaminase activity in murine derived Friend erythroleukemia cells. J. Natl. Cancer Inst., 70:965PubMedGoogle Scholar
  49. Ichinose, A., Hendrickson, L. E., Fujikawa, K., and Davie, E. W., 1986, Amino acid sequence of the a subunit of human factor III, Biochemistry., 25:6900PubMedCrossRefGoogle Scholar
  50. Jelenska, M. M., Fesus, L., and Kopec, M., 1980, The comparative ability of plasma and tissue transglutaminase to use collagen as a substrate, Biochim. Biophys. Acta, 616:167PubMedCrossRefGoogle Scholar
  51. Julian, C., Spech, N. A., and Pierce, S. K., 1983, Primary amines inhibit the triggering of B lymphocytes to antibody synthesis, J. Immunol., 130:91PubMedGoogle Scholar
  52. Kannagi, R., Teshigawara, K., Noro, N., and Masuda, T., 1982, Transglutaminase activity during the differentiation of macrophages, Biochem., Biophys. Res. Commun., 105:164CrossRefGoogle Scholar
  53. Korner, G., and Bachrach, U., 1985, Activation and de novo synthesis of transglutaminase in cultured glioma cells, J. Cell. Physiol., 124:379PubMedCrossRefGoogle Scholar
  54. Laki, K., and Lorand, L., 1948, On the stability of fibrin clots, Science, 108:280PubMedCrossRefGoogle Scholar
  55. Leu, R. W., Herriot, M. J., Moore, P. E., Orr, G. R., and Birckbichler, P. J., 1982, Enhanced transglutaminase activity associated with macrophage activation, Exp. Cell Res., 141:191PubMedCrossRefGoogle Scholar
  56. Lichti, U., Ben, T., Yuspa, S. H., 1985, Retinoic acid induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase, J. Biol. Chem., 260:1422PubMedGoogle Scholar
  57. Lichti, U., Nagae, S., Roop, D. R., Steinert, M., and Yuspa, S. H., 1987, Characterization of the mouse cornified envelope and one of its component proteins, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  58. Lorand, L., and Conrad, S. M., 1984, Transglutaminases, Mol. Cell. Biochem., 58:9PubMedCrossRefGoogle Scholar
  59. Lorand, L., Losowsky, M. S., Miloszewski, K. J. M., 1980, Human factor XIII: Fibrin-stabilizing factor, Progr. Haemost. Thrombos., 5:245Google Scholar
  60. Lorand, L., Weissman, B., Epel, D., and Lorand, J. B., 1976, Role of intrinsic transglutaminase in the Ca mediated cross-linking of erythrocyte proteins, Proc. Natl. Acad. Sci. U.S.A., 73:4479PubMedCrossRefGoogle Scholar
  61. Loewy, A. G., Wilson, F. J., Taggart, N. M., Greene, E., Frasca, P., Kaufman, H. S., and Sorrell, M. J., 1983, A covalently cross-linked matrix in skeletal muscle fibers, Cell Motility, 3:463PubMedCrossRefGoogle Scholar
  62. Lucas, D. L., Tanuma, S., Davies, P. J. A., Wright, D. G., and Johnson, G. S., 1984, Maturation of human promyelocytic leukemia cells induced by nicotinamide: Evidence of a regulatory role of ADP-ribosylation of chromosomal proteins, J. Cell Physiol., 121:334PubMedCrossRefGoogle Scholar
  63. Lynch, G. W., Stayler, H. S., Miller, B. E., and McDonagh, J., 1987, Characterization of thrombospondin as a substrate for factor XIII transglutaminase, J. Biol. Chem., 262:1772PubMedGoogle Scholar
  64. Maccioni, R. B., and Seeds, N. W., 1986, Transglutaminase and neuronal differentiation, Mol. Cell. Biochem., 69:161PubMedCrossRefGoogle Scholar
  65. Mehta, K., and Lopez-Berestein, G., 1987, Retinoic acid-induced tissue transglutaminase as a possible modulator of macrophage activation functions, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  66. Mehta, K., Lopez-Berestein, G., Moore, W. T., and Davies, P. J. A., 1985, Gamma interferon requires serum retinoids to promote the expression of tissue transglutaminase in cultured human blood monocytes, J. Immunol., 134:2053PubMedGoogle Scholar
  67. Moore, W. T., Jr., Murtaugh, M. P., and Davies, P. J. A., 1984, Retinoic acid-induced expression of tissue transglutaminase in mouse peritoneal macrophages, J. Biol. Chem., 259:12794PubMedGoogle Scholar
  68. Morris, R. G., Hargreaves, A. D., Duvall, E., and Wyllie, A. H., 1984, Hormone-induced cell death: 2. Surface changes in thymocytes undergoing apoptosis, Am. J. Pathol., 115:426PubMedGoogle Scholar
  69. Mosher, D. F., Schad, P. E., and Kleinman, H. K., 1979, Cross-linking of fibronectin to collagen by blood coagulation factor XIIIa, J. Clin. Invest., 64:781PubMedCrossRefGoogle Scholar
  70. Negi, M., Colbert, M. C., Goldsmith, L. A., 1985, High molecular weight human epidermal transglutaminase, J. Invest. Dermatol., 85:75PubMedCrossRefGoogle Scholar
  71. Nemes, Z., Thomazy, V., Adany, R., and Muszbek, L., 1986, Identification of histiocytic reticulum cells by the immunohistochemical demonstration of factor XIII (F-XIIIa) in human lymph nodes, J. Pathol., 149:121PubMedCrossRefGoogle Scholar
  72. Novogrodsky, A., Quittner, S., Rubin, A. L., and Stenzel, K. H., 1978, Transglutaminase activity in human lymphocytes: Early activation by phytomitogens, Proc. Natl. Acad. Sci. U.S.A., 75:1157PubMedCrossRefGoogle Scholar
  73. Ogawa, H., and Goldsmith, L. A., 1976, Human epidermal transglutaminase. I. Purification and properties. J. Biol. Chem., 251:7281PubMedGoogle Scholar
  74. Parenteau, N. L., Pilato, A., and Rice, R. H., 1986, Induction of keratinocyte type-I transglutaminase in epithelial cells of the rat, Differentiation, 33:130PubMedCrossRefGoogle Scholar
  75. Patel, E., Bruce, S. E., Bjarnason, I., and Peters, T. J., 1985, Rat gastrointestinal transglutaminase: Demonstration of enzyme activity and cell and tissue distribution, Cell Biochem. Function, 3:199CrossRefGoogle Scholar
  76. Peterson, L. L., and Buxman, M. M., 1981, Rat hair follicle and epidermal transglutaminases. Biochemical and immunochemical isozymes, Biochim. Biophys. Acta, 657:268PubMedCrossRefGoogle Scholar
  77. Piacentini, M., Sartori, C., Beninati, S., Bargagli, A. M., and Ceru-Argento, M. P., 1985, Ornithine decarboxylase, transglutaminase, diamine oxidase and total diamines and polyamines in maternal liver and kidney throughout rat pregnancy, Biochem. J., 234:435Google Scholar
  78. Pliura, D., 1987, Mechanism-based irreversible inactivators of transglutaminase, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  79. Puszkin, E. G., and Raghuraman, V., 1985, Catalytic properties of a calmodulin-regulated transglutaminase from human platelets and chicken gizzard, J. Biol. Chem., 260:16012PubMedGoogle Scholar
  80. Rice, R. H., and Green, H., 1978, Relation of protein synthesis and transglutaminase activity to formation of the cross-linked envelope during terminal differentiation of the cultured human epidermal keratinocyte, J. Biol. Chem., 76:705Google Scholar
  81. Rice, R. H., and Green, H., 1979, Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: Activation of the cross-linking by calcium ions, Cell, 18:681PubMedCrossRefGoogle Scholar
  82. Sakata, Y., and Aoki, N., 1982, Significance of cross-linking of α2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis, J. Clin. Invest., 69:536PubMedCrossRefGoogle Scholar
  83. Sarkar, N. K., Clarke, D. D., and Waelsch, H., 1957, An enzymatically catalyzed incorporation of amines into proteins, Biochim. Biophys. Acta, 25:451PubMedCrossRefGoogle Scholar
  84. Schanne, F. A. X., Pfau, R. G., Farber, J. L., 1980, Galactosamine-induced cell death in primary cultures of rat hepatocytes, Am. J. Pathol., 100:25PubMedGoogle Scholar
  85. Schiller, A., and Taugner, R., 1979, Junctions between interstitial cells of the renal medulla: A freeze-fracture study, Cell Tissue Res., 203:231PubMedCrossRefGoogle Scholar
  86. Schroff, G., Neumann, C., and Sorg, C., 1981, Transglutaminase as a marker for subsets of murine macrophages, Eur. J. Immunol., 11:637PubMedCrossRefGoogle Scholar
  87. Simon, M., and Green, H., 1984, Participation of membrane-associated proteins in the formation of the cross-linked envelope of the keratinocyte, Cell, 36:827PubMedCrossRefGoogle Scholar
  88. Simon, M., and Green, H., 1985, Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro, Cell, 40:677PubMedCrossRefGoogle Scholar
  89. Slife, C. W., Dorsett, M. D., Bouquett, A., Register, A., Taylor, E., and Conroy, S., 1985, Subcellular localization of a membrane-associated transglutaminase activity in rat liver, Arch. Biochem. Biophys., 241:329PubMedCrossRefGoogle Scholar
  90. Stein, E., Chiocca, M., Saydak, M., and Davies, P. J. A., 1987, Cloning of a tissue transglutaminase cDNA from mouse peritoneal macrophages, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  91. Takahashi, N., Takahashi, Y., and Putnam, F. W., 1986, Primary structure of blood coagulation factor XIIIa (fibrinoligase, transglutaminase) from human placenta, Proc. Natl. Acad. Sci. U.S.A., 83:8019PubMedCrossRefGoogle Scholar
  92. Thacher, S. M., Coe, E. L., and Rice, R. H., 1985, Keratinocyte-specific transglutaminase of cultured human epidermal cells: Relation to cross-linked envelope formation and terminal differentiation, Cell, 40:685PubMedCrossRefGoogle Scholar
  93. Thacher, S. M., and Levitt, M. L., 1987, Epidermal transglutaminase: Expression and purification, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  94. Thomazy, V. and Fesus, L., 1987a, Immunohistochemical localization of tissue transglutaminase in human specimen, Noble Conference in Cellular and Molecular Biology “Transglutaminase and Protein Crosslinking Reactions”, Miami, Fl., abstractGoogle Scholar
  95. Thomazy, V., and Fesus, L., 1987b, Cellular localization of tissue transglutaminase by immunohistochemical technique, in preparationGoogle Scholar
  96. Van Leuven, F., 1984, Human α2-macroglobulin, Mol. Cell. Biochem., 58:121PubMedCrossRefGoogle Scholar
  97. Williams-Ashman, H. G., Beil, R. E., Wilson, J., Hawkins, M., Grayhack, J., Zunamon, A., and Weinsten, N. K., 1980, Transglutaminases in mammalian reproductive tissues and fluids: Relation to polyamine metabolism and semen coagulation, Adv. Enzyme Regul., 18:239PubMedCrossRefGoogle Scholar
  98. Wyllie, A. H., 1980, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature, 284:555PubMedCrossRefGoogle Scholar
  99. Wyllie, A. H., 1985, The biology of cell death in tumors, Anticancer Res., 5:131PubMedGoogle Scholar
  100. Wyllie, A. H., Kerr, J. F. R., Currie, A. R., 1980, Cell death: The significance of apoptosis, Int. Rev. Cytol., 68:251PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Laszlo Fesus
    • 1
  • Vilmos Thomazy
    • 1
  1. 1.Department of Biochemistry and Department of PathologyUniversity School of MedicineDebrecenHungary

Personalised recommendations