Skip to main content

Adenine Metabolism and Nucleic Acid Synthesis: Applications to Microbiological Oceanography

  • Chapter
Heterotrophic Activity in the Sea

Part of the book series: NATO Conference Series ((MARS,volume 15))

Abstract

Marine microbial ecology is currently one of the least developed areas of microbiological research. This situation has been, in part, due to the limited availability of methods for evaluating the in situ rates of metabolism and growth of naturally occurring microbial populations. In fact, it may be fair to state that our present understanding of the integrated functioning of marine ecosystems is methods limited. A period of rapid advance in our understanding of microbiological oceanographic processes following the successful development and application of each new experimental approach, is evidence of this limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brock, T. D. 1967. Bacterial growth rates in the sea: Direct analysis by thymidine autoradiography. Science 155: 81–83.

    Article  ADS  Google Scholar 

  • Eppley, R. W. 1981. Relations between nutrient assimilation and growth in phytoplankton with a brief review of estimates of growth rate in the ocean, pp. 251–263. In: TS. Piatt [ed.]. Physiological bases of phytoplankton ecology. Can. Bull. Fish. Aquat. Sci. 210: 346 p.

    Google Scholar 

  • Eppley, R. W., R. W. Holmes, and J. D. H. Strickland. 1967. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol. 1: 191–208.

    Article  Google Scholar 

  • Fellows, D., D. M. Karl, and G. Knauer. 1981. Vertical distribution, production and sedimentation of adenosine triphosphate in the upper 1550 meters of the Northeast Pacific Ocean. Deep-Sea Res. 28A: 921–936.

    Article  Google Scholar 

  • Ferguson, R. L., and P. Rublee. 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–145.

    Article  Google Scholar 

  • Fuhrman, J. A., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.

    Google Scholar 

  • Fuhrman, J. A., and F, Azam. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Robbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bcteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Hochstadt, J. 1974. The role of the membrane in the utilization of nucleic acid precursors. CRC Crit. Rev. Biochem. 2: 259–310.

    Article  Google Scholar 

  • Holm-Hansen, O. 1969, Algae: Amounts of DNA and organic carbon in single cells. Science 163: 87–88.

    Article  ADS  Google Scholar 

  • Holm-Hansen, O., W. H. Sutcliffe Jr., and J. Sharp. 1968. Measurement of deoxyribonucleic acid in the ocean and its ecological significance. Limnol. Oceanogr. 13: 507–514.

    Article  Google Scholar 

  • Karl, D. M. 1979. Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. Environ. Microbiol. 38: 850–860.

    Google Scholar 

  • Karl, D. M. 1980. Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev. 44: 739–796.

    Google Scholar 

  • Karl, D. M. 1981. Simultaneous rates of ribonucleic acid and deoxyribonucleic acid syntheses for estimating growth and cell division of aquatic microbial communities. Appl. Environ. Microbiol. 42: 802–810.

    Google Scholar 

  • Karl, D. M. 1982. Selected nucleic acid precursors in studies of aquatic microbial ecology. Appl. Environ. Microbiol. 44: 891–902.

    Google Scholar 

  • Karl, D. M., and G. A. Knauer. 1983. Vertical distribution, transport and exchange of carbon in the Northeast Pacific Ocean: Evidence for multiple zones of bacterial activity. Deep-Sea Res. In press.

    Google Scholar 

  • Karl, D. M., C. D. Winn, and D. C. L. Wong. 1981a. RNA synthesis as a measure of microbial growth in aquatic environments. I. Evaluation, verification and optimization of methods. Mar. Biol. 64: 1–12.

    Article  Google Scholar 

  • Karl, D. M., C. D. Winn, and D. C. L. Wong. 1981b. RNA synthesis as a measure of microbial growth in aquatic environments. II. Field applications. Mar. Biol. 64: 13–21.

    Article  Google Scholar 

  • Kjeldgaard, N. O. 1967. Regulation of nucleic acid and protein synthesis in bacteria. Adv. Microb. Physiol. 1: 39–95.

    Article  Google Scholar 

  • Maaloe, O., and N. O. Kjeldgaard. 1966. Control of Macromolecular Synthesis. W. A. Benjamin Inc., New York.

    Google Scholar 

  • Mandalstam, J., and K. McQuillen. 1976. Biochemistry of Bacterial Growth. John Wiley and Sons, New York.

    Google Scholar 

  • Meyer-Reil, L.-A. 1978. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. Environ. Microbiol. 36: 506–512.

    Google Scholar 

  • Moriarty, D. J. W., and P. C. Pollard. 1981. DNA snythesis as a measure of bacteria productivity in seagrass sediments. Mar. Ecol. Prog. Ser. 5: 151–156.

    Article  Google Scholar 

  • Moriarty, D. J. W., and P. C. Pollard. 1982. Diel variations in bacteria productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar. Biol. 72: 165–173.

    Article  Google Scholar 

  • Nierlich, D. P. 1978. Regulation of bacterial growth, RNA and protein samthesis. Ann. Rev. Microbiol. 32: 393–432.

    Article  Google Scholar 

  • Sutcliffe, W. J., Jr., R. W. Sheldon, and A. Prakash. 1970. Certain aspects of production and standing stock of particulate matter in the surface waters of the Northwest Atlantic Ocean. J. Fish. Res. Board Can. 27: 1917–1926.

    Article  Google Scholar 

  • Thelander, L., and P. Reichard. 1979. Reduction of ribonucleotides. Ann. Rev. Biochem. 48: 133–158.

    Article  Google Scholar 

  • Tobin, R. S., and D. H. J. Anthony. 1978. Tritiated thymidine incorporation as a measure of microbial activity in lake sediments. Limnol. Oceanogr. 23: 161–165.

    Article  Google Scholar 

  • Winn, C. D., and D. M. Karl. 1983. Microbial productivity and growth rate estimates in the tropical North Pacific Ocean. Biol. Oceanogr. in press.

    Google Scholar 

  • Yamazaki, H., and K. Leung. 1981. Determination of the total rates of synthesis and degradation of RNA in bacterial cultures. Can. J. Microbiol. 27: 168–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Karl, D.M., Winn, C.D. (1984). Adenine Metabolism and Nucleic Acid Synthesis: Applications to Microbiological Oceanography. In: Hobbie, J.E., Williams, P.J.l. (eds) Heterotrophic Activity in the Sea. NATO Conference Series, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9010-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9010-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9012-1

  • Online ISBN: 978-1-4684-9010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics