Measurement of Bacterioplankton Growth in the Sea and Its Regulation by Environmental Conditions

  • Farooq Azam
  • Jed A. Fuhrman
Part of the NATO Conference Series book series (NATOCS, volume 15)


The last few years have witnessed something of a revolution in our view of the role of bacteria in the marine environment. It is now being recognized that bacteria play a quantitatively significant role in the flow of energy and matter in marine ecosystems. The central theme of this “new view” is based on two lines of evidence: (1) bacterial biomass is a significant part of the total biomass in the oceans (Hobbie et al. 1977), and (2) the bacterioplankton is, metabolically, a highly active component of marine biota (Pomeroy 1974; Williams 1981; Azam and Hodson 1977; Hagström et al. 1979; Fuhrman and Azam 1980, 1982). This thinking is diametrically opposed to the conventional wisdom which portrays bacterioplankton as quantitatively trivial and, even today, insists that dormancy due to insufficient nutrients is the dominant physiological state of most bacteria.


Bacterial Growth Dissolve Organic Matter Marine Bacterium Thymidine Incorporation Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammerman, J. W., and F. Azam. 1981. Dissolved cyclic adenosine monohosphate (cAMP) in the sea and uptake of cAMP by marine bacteria. Mar. Ecol. Prog. Ser. 5: 85–89.CrossRefGoogle Scholar
  2. Ammerman, J. W., and F. Azam. 1982. Uptake of cyclic AMP by natural populations of marine bacteria. Appl. Environ. Microbiol. 43: 869–876.Google Scholar
  3. Azam, F., and J. W. Ammerman. 1982. Growth of free-living marine bacteria around sources of dissolved organic matter. EOS 63: 54.Google Scholar
  4. Azam, F., J. W. Ammerman, J. A. Fuhrman, and Å. Hagström. 1983. Role of bacteria in polluted marine systems. To be published in Proc. of the Workshop on Meaningful Measures of Marine Pollution Effects. NOAA.Google Scholar
  5. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.-A. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  6. Azam, F., and R. E. Hodson. 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceaongr. 22: 492–501.CrossRefGoogle Scholar
  7. Azam, F., and R. E. Hodson. 1982. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. Prog. Ser. 6: 213–222.CrossRefGoogle Scholar
  8. Burney, C. M., K. M. Johnson, and J. McN. Sieburth. 1981. Diel flux of dissolved carbohydrate in a salt marsh and a simulated estuarine ecosystem. Mar. Biol. 63: 175–187.CrossRefGoogle Scholar
  9. Burney, C. M., P. K. Davis, K. M. Johnson and J. McN. Sieburth. 1982. Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar. Biol. 67: 311–322.CrossRefGoogle Scholar
  10. Cuhel, R. L., C. D. Taylor, and H. W. Jannasch. 1982. Assimilatory sulfur metabolism in marine microorganisms: Considerations for the application of sulfate incorporation into protein as a measurement of natural population protein synthesis. Appl. Environ. Microbiol. 43: 160–168.Google Scholar
  11. Ducklow, H. W. 1983. Production and fate of bacteria in the oceans. Bioscience 33: 494–501.CrossRefGoogle Scholar
  12. Ducklow, H. W., and D. L. Kirchman. 1983. Bacterial dynamics and distribution during a spring diatom bloom in the Hudson River plume, USA. J. Plankton Res. 5: 333–355.CrossRefGoogle Scholar
  13. Eppley, R. W., S. G. Horrigan, J. A. Fuhrman, E. R. Brooks, C. C. Price, and K. Sellner. 1981. Origins of dissolved organic matter in Southern California coastal waters: Experiments on the role of zooplankton. Mar. Ecol. Prog. Ser. 6: 149–159.CrossRefGoogle Scholar
  14. Fallon, R. D., S. Y. Newell, and C. S. Hopkinson. 1983. Bacterial production in marine sediments: will cell-specific measures agree with whole-system metabolism? Mar. Ecol. Prog. Ser. 11: 119–127.CrossRefGoogle Scholar
  15. Francisco, D. E., R. A. Mah, and A. C. Rabin. 1973. Acridine- orange-epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microscop. Soc. 92: 416–421.CrossRefGoogle Scholar
  16. Fuhrman, J. A., J. W. Ammerman, and F. Azam. 1980. Bacterioplankton in the coastal euphotic zone: distribution, activity, and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.CrossRefGoogle Scholar
  17. Fuhrman, J. A., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.Google Scholar
  18. Fuhrman, J. A., and F. Azam. 1982. Thymidine Incorporation as a measure of heterotrophic bacterloplankton production In marine surface waters: Evaluation and field results. Mar. Biol. 66: 109–120.CrossRefGoogle Scholar
  19. Fuhrman, J. A., F. Azam, R. W. Eppley, and A. Hagström. 1982. Diel variations In phytoplankton, bacterloplankton, and related parameters In the Southern California Bight. EOS 63: 946 (Abstract).Google Scholar
  20. Hagström, Ä., J. W. Ammerman, S. Henrichs, and F. Azam. Bacterloplankton growth In seawater: II. Organic matter utilization during steady-state growth. Submitted to Mar. Ecol. Prog. Ser.Google Scholar
  21. Hagström, A., and U. Larsson. Dlel and seasonal variation In growth rates of pelagic bacteria. In: J. E. Hobble and P. J. leB. Williams [eds.]. Heterotrophic Activity In the Sea. Plenum Press.Google Scholar
  22. Hagström, A., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates In aquatic environments. Appl. Environ. Microbiol. 37: 805–812.Google Scholar
  23. Hanson, R. B., and H. K. Lowery. 1983. Nucleic acid synthesis In oceanic microplankton from the Drake Passage, Antarctica: evaluation of steady-state growth. Mar. Biol. 73: 79–89.CrossRefGoogle Scholar
  24. Hellebust, J. A. 1965. Excretion of some organic coumpounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206.CrossRefGoogle Scholar
  25. Hobble, J. E., R. J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.Google Scholar
  26. Karl, D. M. 1979. Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. Environ. Microbiol. 38: 850–860.Google Scholar
  27. Karl, D. M. 1981. Simultaneous rates of ribonnucleic acid and deoxyribonucleic acid syntheses for estimating growth and cell division of aquatic microbial communities. Appl. Environ. Microbiol. 42: 802–810.Google Scholar
  28. Karl, D. M., and O. Holm-Hansen. 1978. Methodology and measurement of adenylate energy charge ratios in environmental samples. Mar. Biol. 48: 185–197.CrossRefGoogle Scholar
  29. Karl, D. M., and C. D. Winn. Adenine metabolism and nucleic acid synthesis: Applications to microbiological oceanography. In: J. E. Hobble and P. J. leB. Williams [eds.]. Heterotrophic Activity in the Sea. Plenum Press.Google Scholar
  30. Karl, D. M., C. D. Winn, and D. C. L. Wong. 1981. RNA synthesis as a measure of microbial growth in aquatic environments. I. Evaluation, verification, and optimization of methods. Mar. Biol. 64: 1–12.Google Scholar
  31. Kirchman, D., H. Ducklow, and R. Mitchell. 1982. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44: 1296–1307.Google Scholar
  32. Larsson, U., and Å. Hagström. 1982. Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophicatlon gradient. Mar. Biol. 67: 57–70.CrossRefGoogle Scholar
  33. Lindberg, U., and L. Skoog. 1970. A method for the determination of dATP and dTTP in picomole amounts. Anal. Biochem. 34: 152–160.CrossRefGoogle Scholar
  34. Maaloe, O., and N. O. Kjeldgaard. 1966. Control of Macromolecular Synthesis: A Study of DNA, RNA, and Protein Synthesis in Bacteria. Benjamin-Cummings Publishing Co., New York.Google Scholar
  35. Mopper, K., and P. Lindroth. 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard analysis. Limnol. Oceanogr. 27: 336–347.CrossRefGoogle Scholar
  36. Moriarty, D. J. W. Measurements of bacterial growth rates in some marine systems using the incorporation of tritiated thymidine into DNA. In: J. E. Robbie and P. J. leB. Williams [eds.]. Heterotrophic Activity in the Sea. Plenum Press.Google Scholar
  37. Moriarty, D. J. W., and P. C. Pollard. 1981. DNA synthesis as a measure of bacterial productivity in seagrass sediments. Mar. Ecol. Prog. Ser. 5: 151–156.CrossRefGoogle Scholar
  38. Newell, S. Y., and R. R. Christian. 1981. Frequency of dividing cells as an estimator of bacterial productivity. Appl. Environ. Microbiol. 42: 23–31.Google Scholar
  39. Newell, S. Y., and R. D. Fallon. 1982. Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone estimated via direct counting and parallel measurements of thymidine incorporation. Microb. Ecol. 8: 33–46.CrossRefGoogle Scholar
  40. Pomeroy, L. R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.CrossRefGoogle Scholar
  41. Sharp, J. H. 1977. Excretion or organic matter by marine phyto- plankton: do healthy cells do it? Limnol. Oceanogr. 22: 381–399.MathSciNetGoogle Scholar
  42. Sieburth, J. McN., K. M. Johnson, C. M. Burney, and D. M. Lavoie. 1977. Estimation of in situ rates of heterotrophy using diurnal changes in organic matter and growth rates of picoplankton in diffusion culture. Helgol. Wiss. Meeresunters. 30: 565–574.CrossRefGoogle Scholar
  43. Stevenson, L. H. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.CrossRefGoogle Scholar
  44. Van Es, F. B., and L.-A. Meyer-Reil. 1982. Biomass and metabolic activity of heterotrophic marine bacteria, pp. 111–179. In : K. C. Marshal [ed.]. Advances in Microbial Ecology. Plenum Press.CrossRefGoogle Scholar
  45. Vyshkvartsec, D. I. 1980. Bacterioplankton in shallow inlets of Posyeta Bay. Microbiology 48: 603–609.Google Scholar
  46. Ward, B. B., and M. J. Perry. 1980. Immunofluorescent assay for the marine ammonium-oxidizing bacterium Nitrosococcus oceanus. Appl. Environ. Microbiol. 39: 913–918.Google Scholar
  47. Williams, P. J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates. J. Mar. Biol. Assoc. UK 50: 859–870.CrossRefGoogle Scholar
  48. Williams, P. J. leB. 1981. Incorporation of microheterotrohpic processes into the classical paradigm of the planktonic food web. Kiel. Meersforsch. Sonderh. 5: 1–28.Google Scholar
  49. Williams, P. J. leB. 1984. A review of measurements of respiration rates of marine plankton populations, In: J. E. Hobbie and P. J. leB. Williams [eds.]. Heterotrophic Activity in the Sea. Plenum Press.Google Scholar
  50. Zimmerman, R., and L.-A. Meyer-Reil. 1973. A new method for fluorescence staining of bacterial populations on membrane filters. Kiel. Meersforsch. 30: 24–27.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Farooq Azam
    • 1
  • Jed A. Fuhrman
    • 2
  1. 1.Institute of Marine Resources, A-018 Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Marine Sciences Research CenterState University of New YorkStony Brook, L. I.USA

Personalised recommendations