Sinking of Particulate Matter from the Surface Water of the Ocean

  • Barry T. Hargrave
Part of the NATO Conference Series book series (NATOCS, volume 15)


Concentrations of suspended particulate matter in the ocean do not change over short periods of time (days) if processes of supply are balanced by processes of removal. Thus, the amount of organic matter available for utilization within the water column can be calculated as the difference between phytoplankton net production and the loss of particulate organic matter by gravitational settling. Advective loss is assumed to be balanced by advective supply. Then, the concentration of organic matter available for heterotrophic consumption in surface waters is that produced and not removed by sedimentation.


Suspended Particulate Matter Particulate Organic Matter Particulate Organic Carbon Fecal Pellet Sediment Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benninger, L. K. 1978. 210pbbalance in Long Island Sound. Geochim. Cosmochim. Acta 42: 1165–1174.ADSCrossRefGoogle Scholar
  2. Benninger, L. K., and S. Krishnaswami. 1981. Sedimentary process in the inner New York Bight: evidence from excess 210Pb and 239, 240 Pu. Earth Planet. Sci. Lett. 53: 158–174.ADSCrossRefGoogle Scholar
  3. Bishop, J. K., J. M. Edmond, D. R. Ketten, M. P. Bacon, and W. B. Silkers. 1977. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Res. 24: 511–548.CrossRefGoogle Scholar
  4. Bishop, J. K., D. R. Ketten, and J. M. Edmond. 1978. The chemistry, biology and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic Ocean. Deep-Sea Res. 25: 1121–1161.CrossRefGoogle Scholar
  5. Bishop, J. K. B., R. W. Collier, D. R. Kettens, and J. M. Edmonds. 1980. The chemistry, biology and vertical flux of particulate matter from the upper 1500 m of the Panama Basin. Deep-Sea Res. 27A: 615–640.CrossRefGoogle Scholar
  6. Bloesch, J., and N. M. Burns. 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrol. 42: 15–55.CrossRefGoogle Scholar
  7. Blomqvist, S., and L. Häkanson. 1981. A review on sediment traps in aquatic environments. Arch. Hydrobiol. 91: 101–132.Google Scholar
  8. Blomqvist, S., and C. Kofoed. 1981. Sediment trapping - a sub- aquatic experiment. Limnol. Oceanogr. 26: 585–590.CrossRefGoogle Scholar
  9. Brewer, P. G., Y. Nozaki, D. W. Spencer, and A. P. Fleer. 1980. Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes. J. Mar. Res. 38: 703–741.Google Scholar
  10. Broecker, W. S., A. Kaufman, and R. M. Trier. 1973. The residence time of thorium in surface seawater and its implications regarding the rate of reactive pollutants. Earth Planet. Sci. Lett. 20: 35–44.ADSCrossRefGoogle Scholar
  11. Bruland, K. W., and M. W. Silver. 1981. Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar. Biol. 63: 295–300.CrossRefGoogle Scholar
  12. Craig, H. 1971. The deep metabolism in oxygen consumption in abyssal ocean water. J. Geophys. Res. 76: 5078–5086.ADSCrossRefGoogle Scholar
  13. Deuser, W. G., E. H. Ross, and R. F. Anderson. 1982a. Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Res. 28: 495–505.CrossRefGoogle Scholar
  14. Deuser, W. G., E. H. Ross, C. Hembleben, and M. Spindler. 1981b. Seasonal changes in species composition, number, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 33: 103–127.CrossRefGoogle Scholar
  15. Dugdale, R. C., and J. J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.CrossRefGoogle Scholar
  16. Eppley, R. W., and B. J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep sea. Nature 282: 677–680.ADSCrossRefGoogle Scholar
  17. Eppley, R. W., E. H. Renger, and W. G. Harrison. 1979. Nitrate and phytoplankton production in southern California coastal waters. Limnol. Oceanogr. 24: 483–494.CrossRefGoogle Scholar
  18. Gardner, W. D. 1980a. Sediment trap dynamics and calibration: a laboratory evaluation. J. Mar. Res. 38: 17–39.Google Scholar
  19. Gardner, W. D. 1980b. Field assessment of sediment traps. J. Mar. Res. 38: 41–52.Google Scholar
  20. Garside, C., and T. C. Malone. 1978. Monthly oxygen and carbon budgets of the New York Bight Apex. Estuarine Coastal Mar. Sci. 6: 93–104.CrossRefGoogle Scholar
  21. Gordon, D. C., Jr. 1977. Variability of particulate organic carbon and nitrogen along the Halifax-Bermuda section. Deep-Sea Res. 24: 257–270.CrossRefGoogle Scholar
  22. Gordon, D. C., Jr., P. J. Wangersky, and R. W. Sheldon. 1979. Detailed observations on the distribution and composition of particulate organic material at two stations in the Sargasso Sea. Deep-Sea Res. 26: 1083–1092.CrossRefGoogle Scholar
  23. Hargrave, B. T. 1975. The importance of total and mixed-layer depth in the supply of organic material to bottom communities. Symp. Biol. Hung. 15: 157–165.Google Scholar
  24. Hargrave, B. T. 1978. Seasonal changes in oxygen uptake by settled particulate matter and sediments in a marine bay. J. Fish. Res. Board Can. 35: 1621–1628.CrossRefGoogle Scholar
  25. Hargrave, B. T. 1980. Factors affecting the flux of organic matter to sediments in a marine bay, pp. 243–263.In: K. R. Tenore and B. C. Coull [eds.]. Marine Benthic Dynamics. Univ. S. Carolina Press, Columbia.Google Scholar
  26. Hargrave, B. T., and N. M. Burns. 1979. Assessment of sediment trap collection efficiency. Limnol. Oceanogr. 24: 1124–1136.CrossRefGoogle Scholar
  27. Hargrave, B. T., G. A. Phillips, and S. Taguchi. 1976. Sedimentation measurements in Bedford Basin, 1973–1974. Fish. Mar. Ser. Rept. 608.Google Scholar
  28. Harrison, W. G. 1978. Experimental measurements of nitrogen remineralization in coastal waters. Limnol. Oceanogr. 23: 684–694.CrossRefGoogle Scholar
  29. Honjo, S. 1980. Material fluxes and modes óf sedimentation in the mesopelagic and bathypelagic zones. J. Mar. Res. 38: 53–97.Google Scholar
  30. Howarth, R. W., and J. M. Teal. 1980. Energy flow in a salt marsh ecosystem: the role of reduced inorganic sulfur compounds. Am. Nat. 116: 862–872.CrossRefGoogle Scholar
  31. Hutchinson, G. E. 1938. On the relation between the oxygen deficit and the productivity and typology of lakes. Int. Rev. Hydrobiol. 36: 336–355.CrossRefGoogle Scholar
  32. Iseki, K. 1981a. Vertical transport of particulate organic matter in the deep Bering Sea and Gulf of Alaska. J. Oceanogr. Soc. Jpn. 37: 101–108.CrossRefGoogle Scholar
  33. Iseki, K. 1981b. Particulate organic matter transport to the deep sea by salp fecal pellets. Mar. Ecol. Prog. Ser. 5: 55–60.CrossRefGoogle Scholar
  34. Iseki, K., F. Whitney, and C. S. Wong. 1980. Biochemical changes of sedimented matter in sediment trap in shallow coastal waters. Bull. Plankton Soc. Jpn. 27: 27–36.Google Scholar
  35. Iturriaga, R. 1979. Bacterial activity related to sedimenting particulate matter. Mar. Biol. 55: 157–169.CrossRefGoogle Scholar
  36. Kirchner, H. B. 1975. An evaluation of sediment trap methodology. Limnol. Oceanogr. 20: 657–661.CrossRefGoogle Scholar
  37. Knauer, G. A., J. H. Martin, and K. W. Bruland. 1979. Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res. 26: 97–108.CrossRefGoogle Scholar
  38. Komar, P. D., A. P. Morse, L. F. Small, and S. W. Fowler. 1981. An analysis of sinking rates of natural copepod and euphausiid pellets. Limnol. Oceanogr. 26: 172–180.CrossRefGoogle Scholar
  39. Lai, D., and A. Lerman. 1975. Size spectra of biogenic particles in ocean water and sediments. J. Geophys. Res. 80: 423–430.ADSCrossRefGoogle Scholar
  40. Lai, D., and B. L. K. Somayaiulu. 1977. Particulate transport of radionuclides 14C and to deep waters in the Pacific Ocean. Limnol. Oceanogr. 22: 55–59.CrossRefGoogle Scholar
  41. Lerman, A., K. L. Carder, and P. R. Betzer. 1977. Elimination of five suspensoids in the oceanic water column. Earth Planet. Sci. Lett. 37: 61–70.ADSCrossRefGoogle Scholar
  42. Lerman, A., D. Lai, and M. F. Dacey. 1974. Stokes settling and chemical reactivity of suspended particles in natural waters, pp. 17–47. In: R. J. Gibbs [ed.]. Suspended Solids in Water. Plenum Press.Google Scholar
  43. Lorenzen, C. J., F. R. Shuman, and J. T. Bennett. 1981. In situ calibration of a sediment trap. Limnol. Oceanogr. 26: 580–585.CrossRefGoogle Scholar
  44. McCave, I. N. 1975. Vertical flux of particles in the ocean. Deep-Sea Res. 22: 491–502.Google Scholar
  45. Minagawa, M., and S. Tsunogai. 1980. Removal of 234Th from a coastal sea: Funka Bay, Japan. Earth Planet. Sci. Lett. 47: 51–64.ADSCrossRefGoogle Scholar
  46. Müller, P. J., and E. Suess. 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. I. Organic carbon preservation. Deep-Sea Res. 26: 1347–1362.Google Scholar
  47. Nakajima, K., and S. Nishizawa. 1972. Exponential decrease in particulate carbon concentration in a limited depth interval in the surface layer of the Bering Sea, pp. 495–505. In: A. Y. Takenouti et al. [eds.]. Biological Oceanography of the Northern North Pacific Ocean. Idemitsu Shoten, Toxyo, Japan.Google Scholar
  48. Peterson, B. J. 1980. Aquatic primary productivity and the 14C-C02 method: a history of the productivity problem. Ann. Rev. Ecol. Syst. 11: 359–385.CrossRefGoogle Scholar
  49. Platt, T., and R. J. Conover. 1971. Variability and its effect on the 24 h chlorophyll budget of a small marine basin. Mar. Biol. 1: 52–65.CrossRefGoogle Scholar
  50. Reynolds, C. S., S. W. Wiseman, and W. D. Gardner. 1980. Aquatic sediment traps and trapping methods. Freshw. Biol. Assoc. Occas. Puhl. 11.Google Scholar
  51. Riley, G. A., H. Stommel, and D. F. Bumpus. 1949. Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Oceanogr. Collect. Yale Univ. 12: 1–169.Google Scholar
  52. Riley, G. A. 1951. Oxygen, phosphate and nitrate in the Atlantic Ocean. Bull. Bingham Oceanogr. Collect. Yale Univ. 13: 1–126.Google Scholar
  53. Riley, G. A. 1970. Particulate organic matter in sea water. Adv. Mar. Biol 8: 1–118.CrossRefGoogle Scholar
  54. Rowe, G. T., C. H. Clifford, K. L. Smith Jr., and P. C. Hamilton. 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature 255: 215–217.ADSCrossRefGoogle Scholar
  55. Rowe, G. T., and W. D. Gardner. 1979. Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps. J. Mar. Res. 37: 581–668.Google Scholar
  56. Shanks, A. L., and J. D. Trent. 1980. Marine snow: sinking rates and potential role in vertical flux. Deep-Sea Res. 27: 137–143.CrossRefGoogle Scholar
  57. Sheldon, R. W., A. Prakash, and W. H. Sutcliffe. 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340.CrossRefGoogle Scholar
  58. Smayda, T. 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev, 8: 353–414.Google Scholar
  59. Soutar, A., S. A. Kling, P. A. Grill, E. Duffrin, and K. W. Bruland. 1977 Monitoring the marine environment through sedimentation. Nature 266: 136–139.ADSCrossRefGoogle Scholar
  60. Staresinic, N., G. T. Rowe, D. Shaughnessey, and A. J. Williams. 1977 Measurement of the vertical flux of particulate matter with a free-drifting sediment trap. Limnol. Oceanogr. 23: 559–563.CrossRefGoogle Scholar
  61. Suess, E. 1980. Particulate organic carbon flux in the oceans - surface productivity and oxygen utilization. Nature 288: 260–263.ADSCrossRefGoogle Scholar
  62. Wangersky, P. J. 1976. Particulate organic carbon in the Atlantic and Pacific Oceans. Deep-Sea Res. 23: 457–465.Google Scholar
  63. Wiehe, P. H., S. H. Boyd, and G. Winget. 1976. Particulate matter sinking to the deep-sea floor at 2000 m in the Tongue of the Ocean, Bahamas, with a description of a new sedimentation trap. J. Mar. Res. 34: 341–354.Google Scholar
  64. Wiehe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison, and L. M. Philbin. 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53: 249–255.CrossRefGoogle Scholar
  65. Williams, P. M., M. G. Stenhouse, E. M. Druffel, and M. Koide. 1978. Organic activity in an abyssal marine sediment. Nature 276: 698–701.ADSCrossRefGoogle Scholar
  66. Wyrtki, K. 1962. The oxygen minima in relation to ocean circulation. Deep-Sea Res. 9: 11–23.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Barry T. Hargrave
    • 1
  1. 1.Marine Ecology LaboratoryBedford Institute of OceanographyDartmouthCanada

Personalised recommendations