Advertisement

Dynamics of Pools of Dissolved Organic Carbon

  • Richard T. Wright
Part of the NATO Conference Series book series (NATOCS, volume 15)

Abstract

Bacteria living and growing in the plankton of marine waters are clearly doing so at the expense of organic matter in the dissolved state. In recent years our understanding of this process has improved greatly. This paper will explore the interaction of bacteria and dissolved organic matter from an ecological viewpoint. In energy flow terms, the DOM (dissolved organic matter) of natural waters can be construed as a trophic level, the base of a food chain involving only heterotrophs. The next (higher) trophic level is occupied by the heterotrophic microorganisms dependent on DOM, and there is good evidence now that in planktonic ecosystems the bacteria uniquely occupy this trophic level. They in turn contribute energy to higher trophic levels when they are fed on by planktonic and benthic animals. From this point the energy flow joins that of the food chain based on particulate matter such as algae and detritus.

Keywords

Coastal Water Dissolve Organic Matter Organic Solute Turnover Time Kinetic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. 1981. Biodegradation of chemicals of environmental concern. Science 211: 132–138.ADSCrossRefGoogle Scholar
  2. Azam, F., and O. Holm-Hanson. 1973. Use of tritiated substrates in the study of heterotrophy in seawater. Mar. Biol. 23: 191–196.CrossRefGoogle Scholar
  3. Banoub, M., and P. J. leB. Williams. 1972. Measurements of microbial activity and organic material in the Western Mediterranean Sea. Deep-Sea Res. 19: 433–443.Google Scholar
  4. Bell, W. H. 1980. Bacterial utilization of algal extracellular products. I. The kinetic approach. Limnol. Oceanogr. 25: 1007–1020.CrossRefGoogle Scholar
  5. Bell, W. H., and E. Sakshaug. 1980. Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations. Limnol. Oceanogr. 25: 1021–1033.Google Scholar
  6. Billen, G., C. Joiris, J. Wijnant, and G. Gillain. 1980. Concentration and microbiological utilization of small organic molecules in the Scheldt Estuary, the Belgian coastal zone of the North Sea and the English Channel. Est. Coastal Mar. Sci. 11: 279–294.CrossRefGoogle Scholar
  7. Burney, C. M., K. M. Johnson, and J. McN. Sieburth. 1981. Diel flux of dissolved carbohydrate in a salt marsh and a simulated ecosystem. Mar. Biol. 63: 175–187.CrossRefGoogle Scholar
  8. Burnison, B. K., and R. Y. Merita. 1974. Heterotrophic potential for amino acid uptake in a naturally eutrophic lake. Appl. Microbiol. 27: 488–495.Google Scholar
  9. Crawford, C. C., J. E. Hobbie, and K. L. Webb. 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563.CrossRefGoogle Scholar
  10. Dawson, R., and K. Gocke. 1978. Heterotrophic activity in comparison to the free amino acid concentrations in Baltic Sea water samples. Oceanol. Acta. 1: 45–54.Google Scholar
  11. Degens, E. T. 1970. Molecular nature of nitrogenous compounds in sea water and recent marine sediments, pp. 77–106.In: D. Hood [ed.]. Organic Matter in Natural Waters. Occas. Publ. #l. Institute of Mar. Science, Alaska.Google Scholar
  12. DeLattre, J. M., R. Delesmont, M. Clabaux, C. Oger, and H. Leclerc. 1979. Bacterial biomass, production and heterotrophic activity of the coastal seawater at Gravelines (France). Oceanol. Acta 2: 317–324.Google Scholar
  13. Derenbach, J., and P. J. leB. Williams. 1974. Autotrophic and bacteria production; fractionation of plankton populations by differential filtration of samples from the English Channel. Mar. Biol. 25: 263–269.CrossRefGoogle Scholar
  14. Dietz, A. S., L. J. Albright, and T. Tuominen. 1977. Alternative model and approach for determining microbial heterotrophic activities in aquatic systems. Appl. Environ. Microbiol. 33: 817–823.Google Scholar
  15. Eppley, R. W., S. G. Horrigan, J. A. Fuhrman, E. R. Brooks, C. C. Price, and K. Sellner. 1981. Origins of dissolved organic matter in Southern California coastal waters: Experiments on the role of zooplankton. Mar. Ecol. Prog. Ser. 6: 149–159.CrossRefGoogle Scholar
  16. Ferguson, R. L., and P. Rublee. 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–145.CrossRefGoogle Scholar
  17. Fuhrman, J. A., J. W. Ammerman, and F. Azam. 1980. Bacterioplankton in the coastal euphotic zone: Distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.CrossRefGoogle Scholar
  18. Fuhrman, J. A., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.Google Scholar
  19. Gardner, W. S., and J. A. Stephens. 1978. Stability and composition of terrestrially derived dissolved organic nitrogen in continental shelf surface waters. Mar. Chem. 6: 335–342.CrossRefGoogle Scholar
  20. Garrasi, C., E. T. Degens, and K. Mopper. 1979. The free amino acid composition of seawater obtained without desalting and preconcentration. Mar. Chem. 8: 71–85.CrossRefGoogle Scholar
  21. Gillespie, P. A., R. A. Morita, and L. P. Jones. 1976. The heterotrophic activity for amino acids, glucose and acetate in Antarctic waters. J. Oceanogr. Soc. Japan 32: 74–82.CrossRefGoogle Scholar
  22. Gocke, K. 1977. Comparison of methods for determining the turnover times of dissolved organic compounds. Mar. Biol. 42: 131–141.CrossRefGoogle Scholar
  23. Gocke, K., R. Dawson, and G. Liebezeit. 1981. Availability of dissolved free glucose to heterotrophic microorganisms. Mar. Biol. 62: 209–216.CrossRefGoogle Scholar
  24. Hagström, Ä., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 27: 805–812.Google Scholar
  25. Hobbie, J. E., R. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.Google Scholar
  26. Hodson, R. E., F. Azam, A. F. Carlucci, J. A. Fuhrman, D. M. Karl, and O. Holm-Hansen. 1981. Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar. Biol. 61: 89–94.CrossRefGoogle Scholar
  27. Hollibaugh, J. T. 1976. The biological degradation of arginine and glutamic acid in seawater in relation to the growth of phytoplankton. Mar. Biol. 36: 303–312.CrossRefGoogle Scholar
  28. Hollibaugh, J. T. 1978. Nitrogen regeneration during the degradation of several amino acids by plankton communities collected near Halifax, Nova Scotia, Canada. Mar. Biol. 45: 191–201.CrossRefGoogle Scholar
  29. Hollibaugh, J. T. 1979. Metabolic adaptation in natural bacterial populations supplemented with selected amino acids. Est. Coastal Mar. Sci. 9: 215–230.CrossRefGoogle Scholar
  30. Ittekkot, V., U. Borckmann, W. Michaelis, and E. T. Degens. 1981. Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. Mar. Ecol. Prog. Ser. 4: 299–305.CrossRefGoogle Scholar
  31. Iturriaga, R., and G. Rheinheimer. 1975. Eine einfache methode zur auszahlung von bakterien mit aktivem eletronentranspotsystem in wasser und sedimentproben. Kiel. Meeresforsch. 31: 83–86.Google Scholar
  32. Iturriaga, R., and H. G. Hoppe. 1977. Observations of heterotrophic activity on photoassimilated organic matter. Mar. Biol. 40: 101–108.CrossRefGoogle Scholar
  33. Johnson, K. M., C. M. Burney, and J. McN. Sieburth. 1981. Enigmatic marine ecosystem metabolism measured by direct diel CO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65: 49–60.CrossRefGoogle Scholar
  34. Larsson, U., and Ä. Hagström. 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.CrossRefGoogle Scholar
  35. Lindroth, P. and K. Mopper. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal. Chem. 51: 167–174.CrossRefGoogle Scholar
  36. Linley, E. A. S., R. C. Newell, and S. A. Bosma. 1981. Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage. Mar. Ecol. Prog. Ser. 4: 31–41.Google Scholar
  37. Lucas, M. I., R. C. Newell, and B. Velimirov. 1981. Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). II. Differential utilisation of dissolved organic components from kelp mucilage. Mar. Ecol. Prog. Ser. 4: 43–55.Google Scholar
  38. Menzel, D. W., and J. H. Ryther. 1970. Distribution and cycling of organic matter in the oceans, pp. 31–54. In:D. Hood [ed.]. Organic Matter in Natural Water. Occas. Publ. #I, Inst, of Mar. Science, Alaska.Google Scholar
  39. Mopper, K., and P. Lindroth. 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347.CrossRefGoogle Scholar
  40. Novitsky, J. A., and R. Y. Morita. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48: 289–295.CrossRefGoogle Scholar
  41. Odum, E. P. 1971. Fundamentals of Ecology. W. B. Saunders, Philadelphia.Google Scholar
  42. Ogura, N. 1970. High molecular weight organic matter in seawater. Mar. Chem. 5: 535–549.MathSciNetCrossRefGoogle Scholar
  43. Parsons, T. R., and J. D. M. Strickland. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8: 211–222.Google Scholar
  44. Sieburth, J. McN., and A. Jensen. 1970. Production and transformation of extracellular organic matter from littoral marine algae: A resume, pp. 203–224. D. Hood [ed.]. Organic Matter in Natural Water. Occas. Publ. #1, Inst, of Mar. Science, Alaska.Google Scholar
  45. Sieburth, J. McN., K. M. Johnson, C. M. Burney, and D. M. Lavoie. 1977. Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture. Helgol. Wiss. Meeresunters. 30: 565–574.CrossRefGoogle Scholar
  46. Stevenson, H. L. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4: 127–133.CrossRefGoogle Scholar
  47. Turner, R. E. 1978. Community plankton respiration in a salt marsh estuary and the importance of macrophytic leachates. Limnol. Oceanogr. 23: 442–451.CrossRefGoogle Scholar
  48. Vaccaro, R. F. 1969. The response of natural microbial populations in seawater to organic enrichment. Limnol. Oceanogr. 14: 726–735.CrossRefGoogle Scholar
  49. Velimirov, B. 1980. Formation and potential trophic significance of marine foam near kelp beds in the Benguela Upwelling system. Mar. Biol. 58: 311–318.CrossRefGoogle Scholar
  50. Walsh, G. E. 1965. Studies on dissolved carbohydrate in Cape Cod waters. II. Diurnal fluctuation in Oyster Pond. Limnol. Oceanogr. 10: 577–582.Google Scholar
  51. Wheeler, J. 1976. Fractionation by molecular weight of organic substances in Georgia coastal water. Limnol. Oceanogr. 21: 846–852.CrossRefGoogle Scholar
  52. Wiebe, W. J., and D. F. Smith. 1977. Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microbeterotrophs. Mar. Biol 42: 213–223.CrossRefGoogle Scholar
  53. Williams, P. J. leB. 1973. The validity of the application of simple kinetic analysis to heterogenous microbial populations. Limnol. Oceanogr. 18: 159–164.CrossRefGoogle Scholar
  54. Williams, P. J. leB. 1975. Biological and chemical dissolved organic material in sea water, pp. 301–364. In: Riley and Skirow [eds.]. Chemical Oceanography, Vol. 2, Second edition. Academic Press, New York.Google Scholar
  55. Williams, P. J. leB., and C. Askew. 1968. A method of measuring the mineralization by micro-organisms of organic compounds in sea-water. Deep-Sea Res. 15: 365–375.Google Scholar
  56. Williams, P. J. leB., and R. W. Gray. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. II. Observation on the responses of heterotrophic marine populations to abrupt increases in amino acid concentration. J. Mar. Biol. Assoc. UK 50: 871–881.Google Scholar
  57. Williams, P. M., H. Oescher, and P. Kinney. 1969. Natural radiocarbon activity of the dissolved organic carbon in the Northwest Pacific Ocean. Nature 224: 256–258.ADSCrossRefGoogle Scholar
  58. Wright, R. T. 1973. Some difficulties in using 14C-organic solutes to measure heterotrophic bacterial activity, pp. 199–217. In: Stevenson and Colwell [eds.], Estuarine Microbial Ecology. Univ. of S. Carolina Press, Columbia.Google Scholar
  59. Wright, R. T. 1978. Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl. Environ. Microbiol. 36: 297–305.Google Scholar
  60. Wright R. T. 1979. Natural heterotrophic activity in estuarine and coastal waters, pp. 119–134. In: Borquin and Pritchard [eds.], Proc. Workshop: Microbial Degradation of Pollutants in Marine Environments. EPA-600 9–79-012.Google Scholar
  61. Wright, R. T., and B. K. Burnison. 1979. Heterotrophic activity measured with radiolabelled organic substrates, p. 140–155. In: Costerton and Colwell [eds.]. Native Aquatic Bacteria: Enumeration, Activity and Ecology. American Society for Testing and Materials, STP 695, Philadelphia.Google Scholar
  62. Wright, R. T., and J. E. Robbie. 1966. The use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.CrossRefGoogle Scholar
  63. Wright, R. T., R. B. Coffin, C. P. Ersing, and D. Pearson. 1982. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnol. Oceanogr. 27: 91–98.CrossRefGoogle Scholar
  64. Wright, R. T., and R. B. Coffin. 1983. Planktonic bacteria in estuaries and coastal waters of northern Massachusetts: spatial and temporal distribution. Mar. Ecol. Prog. Ser. In press.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard T. Wright
    • 1
  1. 1.Department of BiologyGordon CollegeWenhamUSA

Personalised recommendations