Advertisement

Inputs into Microbial Food Chains

  • Jonathan H. Sharp
Part of the NATO Conference Series book series (NATOCS, volume 15)

Abstract

There is little question or disagreement with the contention that phytoplankton contribute the vast majority of the input of organic matter to the sea. There are, however, major controversies today on the actual rate of primary productivity in the sea and on the routes by which organic matter arrives in the dissolved pool.1

Keywords

Continuous Culture Dissolve Organic Matter Carbon Budget Marine Phytoplankton Marine Diatom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antia, N. J., C. D. McAllister, T. R. Parsons, K. Stephens, and J. D. H. Strickland. 1963. Further measurements of primary production using a large-volume plastic sphere. L,imnol. Oceanogr. 8: 166–183.CrossRefGoogle Scholar
  2. Ben-Amotz, A. 1975. Adaptation of the unicellular alga Dunaliella parva to a saline environment. J. Phycol. 11: 50–54.Google Scholar
  3. Bowman, T. E., and L. J. Lancaster. 1965. A bloom of the planktonic blue-green alga, Trichodesmium erythraeum, in the Tonga Islands. Limnol. Oceanogr. 10: 291–293.CrossRefGoogle Scholar
  4. Brockmann, U. H., K. Eberlein, H. D. Junge, E. Maier-Reimer, and D. Siebers. 1979. The development of a natural plankton population in an outdoor tank with nutrient-poor sea water. II. Changes in dissolved carbohydrates and amino acids. Mar. Ecol. Prog. Ser. 1: 283–291.Google Scholar
  5. Burney, C. M., K. M. Johnson, D. M. Lavoie, and J. McN. Sieburth. 1979. Dissolved carbohydrate and microbial ATP in the North Atlantic: concentrations and interactions. Deep-Sea Res. 26: 1267–1290.CrossRefGoogle Scholar
  6. Burney, C. M., P. G. Davis, K. M. Johnson, and J. McN. Sieburth. 1982. Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton distributions in the western Sargasso Sea. Mar. Biol. 65: 289–296.CrossRefGoogle Scholar
  7. Burris, J. E. 1980. Respiration and photorespiration in marine algae, pp. 411–432. In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  8. Carpenter, E. J., and J. S. Lively. 1980. Review of estimates of algal growth using 14C tracer techniques, pp. 161–178. P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  9. Conover, R. J., and V. Francis. 1973. The use of radioactive isotopes to measure the transfer of materials in aquatic food chains. Mar. Biol. 18: 272–283.Google Scholar
  10. Conover, R. J., and M. E. Huntley. 1980. General rules of grazing in pelagic ecosystems, pp. 461–485. In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  11. Copping, A. E., and C. J. Lorenzen. 1980. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25: 873–882.CrossRefGoogle Scholar
  12. Corner, E. D. S., and B. S. Newell. 1967. On the nutrition metabolism of zooplankton. IV. The forms of nitrogen excreted by Calanus. J. Mar. Biol. Assoc. UK 47: 113–120.CrossRefGoogle Scholar
  13. Dawson, R., and G. Liebezeit, 1981. The analytical methods for the characterization of organics in seawater, pp. 445–496. In: E. K. Duursma and R. Dawson [eds.]. Marine Organic Chemistry. Elsevier, New York.Google Scholar
  14. Devol, A. H., and T, T. Packard, 1978. Seasonal changes in respiratory enzyme activity and productivity in Lake Washington microplankton. Limnol. Oceanogr. 23: 104–111.CrossRefGoogle Scholar
  15. Duce, R. A., and E. K. Duursma. 1977. Inputs of organic matter into the ocean. Mar. Chem 5: 319–340.CrossRefGoogle Scholar
  16. Enhuber, G., and H. Gimmler.. 1980. The glycerol permeability of the plasmalemma of the halotolerant green alga Dunaliella parva (volvocales). J. Phycol. 16: 524–532.CrossRefGoogle Scholar
  17. Eppley, R. W. 1980. Estimating phytoplankton growth rates in the central oligotrophic ocean, pp. 231–242. In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  18. Eppley, R. W., E. H. Renger, E. L. Venrick, and M. M. Mullin. 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the north Pacific Ocean. Limnol. Oceanogr. 18: 534–551.CrossRefGoogle Scholar
  19. Epplèy, R. W., and J. H. Sharp. 1915. Photosynthetlc measurements in the central North Pacific: The dark loss of carbon in 24-h incubations. Limnol. Oceanogr. 20: 981–987.CrossRefGoogle Scholar
  20. Eppley, R. W., and J. D. H. Strickland. 1968. Kinetics of marine phytoplankton growth, p. 23–62. In:M. R. Droop and E. J. F. Wood [eds.] Advances in Microbiology of the Sea. Academic Press, New York.Google Scholar
  21. Fiadeiro, M. 1980. Carbon cycling in the ocean, p. 487–496. In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  22. Fisher, N. S. and J. G. Fabris. 1982. Complexation of Cu, Zn, and Cd by metabolites excreted from marine diatoms. Mar. Chem. 11: 245–255.CrossRefGoogle Scholar
  23. Garrels, R. M., and F. T. Mackenzie. 1971. Evolution of Sedimentary Rocks. Norton.Google Scholar
  24. Gauthier, M. J., and M. Aubert. 1981. Chemical telemediators in the marine environment, pp. 225–257. In: E. K. Duursma and R. Dawson [eds.]. Marine Organic Chemistry. Elsevier, New York.Google Scholar
  25. Gieskes, W. W. C., G. W. Kraay, and M. A. Baars. 1979. Current 14C methods for measuring primary production: gross underestimates in oceanic waters. Neth. J. Sea Res. 13: 50–78.CrossRefGoogle Scholar
  26. Goldman, J. C. 1980. Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology, pp. 179–194.In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  27. Goldman, J. C., J. J. McCarthy, and D. G. Peavey. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.ADSCrossRefGoogle Scholar
  28. Handa, N. 1977. Land sources of marine organic matter. Mar. Chem. 5: 341–359.CrossRefGoogle Scholar
  29. Harris, G. P. 1978. Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 10: 1–171.Google Scholar
  30. Hellebust, J. A. 1967. Excretion of organic compounds by cultured and natural populations of marine phytoplankton, pp. 361–366. In: G. H. Lauff [ed.]. Estuaries. AAAS Sci. Publ. No. 83, Washington.Google Scholar
  31. Ittekkot, V. 1982. Variations of dissolved organic matter during a plankton bloom: qualitative aspects, based on sugar and amino acid analysis. Mar. Chem. 11: 143–158.CrossRefGoogle Scholar
  32. Ittekkot, V., U. Brockmann, W. Michaelis, and E. T. Degens. 1981. Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. Mar. Ecol. Prog. Ser. 4: 299–305.CrossRefGoogle Scholar
  33. Jackson, G. A. 1980. Phytoplankton growth and zooplankton grazing in oligotrophic oceans. Nature 284: 439–441.ADSCrossRefGoogle Scholar
  34. Joint, I. R., and A. J. Pomroy. 1981. Primary production in a turbid estuary. Est. Coastal Mar. Sci. 13: 303–316.ADSGoogle Scholar
  35. Jones, T. W., and R. A. Galloway. 1979. Effect of light quality and intensity on glycerol content in Dunaliella tertiolecta (chlorophyceae) and the relationship to cell growth/osmoregulation. J. Phycol. 15: 101–106.CrossRefGoogle Scholar
  36. Kester, D. R., K. T. Crocker, and G. R. Miller. 1973. Small scale oxygen variations in the thermocline. Deep-Sea Res. 20: 409–412.Google Scholar
  37. Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834.CrossRefGoogle Scholar
  38. Lancelot, C. 1979. Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics. Mar. Ecol. Prog. Ser. 1: 179–186.CrossRefGoogle Scholar
  39. Laws, E. A., and D. C. L. Wong. 1978. Studies of carbon and nitrogen metabolism by three marine phytoplankton species in nitrate-limited continuous culture. J. Phycol. 14: 406–416.CrossRefGoogle Scholar
  40. Li, W. K. and J. C. Goldman. 1981. Problems in estimating growth rates of marine phytoplankton from short-term 14C assays. Microb. Ecol. 7: 113–121.CrossRefGoogle Scholar
  41. Lindroth, P., and K. Mopper. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with phthaldialdehyde. Anal. Chem. 51: 1667–1674.CrossRefGoogle Scholar
  42. McCarthy, J. J., and J. C. Goldman. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203: 670–672.ADSCrossRefGoogle Scholar
  43. Mague, T. F., E. Friberg, D. J. Hughes, and I. Morris. 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25: 262–279.CrossRefGoogle Scholar
  44. Mann, K. H., A. R. O. Chapman, and J. A. Gagne. 1980. Productivity of seaweeds: the potential and the reality, pp. 363–380. In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  45. Menzel, D. W. 1974. Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter, pp. 659–678. In: E. D. Goldberg [ed.]. The Sea, Vol. 5.Google Scholar
  46. Meybeck, M. 1981. River transport of organic carbon to the ocean, pp. 219–269. In: G. E. Likens, F. T. Mackenzie, J. E. Richey, J. T. Sedell, and K. K. Turekian [eds.], Flux of Organic Carbon by Rivers to the Oceans. U. S. Dept. Energy Publication CONF-8009140, Washington, D.C.Google Scholar
  47. Mopper, K., R. Dawson, G. Liebezeit, and V. Ittekot. 1980. The monosaccharide spectra of natural waters. Mar. Chem. 10: 55–66.CrossRefGoogle Scholar
  48. Mopper, K., and P. Lindroth. 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347.CrossRefGoogle Scholar
  49. Naylor, S. 1979. Phytoplankton exudation and culture shock. M.Sc. thesis, Southampton University. Cited in Williams 1981b.Google Scholar
  50. Nienhuis, P. E. 1981. Distribution of organic matter in living marine organisms, pp. 31–69. In: E. K. Duursma and R. Dawson [eds.]. Marine Organic Chemistry. Elsevier Scientific Publishing Company.Google Scholar
  51. Perry, M. J., and R. W. Eppley. 1981. Phosphate uptake by phytoplankton in the central north Pacific Ocean. Deep-Sea Res. 28: 39–49.CrossRefGoogle Scholar
  52. Peterson, B. J. 1978. Radiocarbon uptake: Its relation to net particulate carbon production. Limnol. Oceanogr. 23: 179–184.CrossRefGoogle Scholar
  53. Peterson, B. J. 1980. Aquatic primary productivity and the 14C-C02 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11: 359–385.CrossRefGoogle Scholar
  54. Pomeroy, L. R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.CrossRefGoogle Scholar
  55. Redfield, A. C., B. H. Ketchum and F. A. Richards. 1963. The influence of organisms on the composition of sea water, pp. 26–77. In: M. N. Hill [ed.]. The Sea, Vol. II. Interscience, New York.Google Scholar
  56. Richey, J. E., J. T. Brock, R. J. Naiman, R. C. Wissmar, and R. E. Stallard. 1980. Organic carbon: oxidation and transport in the Amazon River. Science 207: 1348–1351.ADSGoogle Scholar
  57. Robinson, J. D., K. H. Mann, and J. A. Novitsky. 1982. Conversion of the particulate fraction of seaweed detritus to bacterial biomass. Limnol. Oceanogr. 27: 1072–1079.CrossRefGoogle Scholar
  58. Sellner, K. G. 1981. Primary productivity and the flux of DOM in several marine environments. Mar. Biol. 65: 101–112.CrossRefGoogle Scholar
  59. Sharp, J. H. 1973. Size classes of organic carbon in sea water. Limnol. Oceanogr. 18: 441–447.CrossRefGoogle Scholar
  60. Sharp, J. H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol. Oceanogr. 22: 381–339.MathSciNetGoogle Scholar
  61. Sharp, J. H. 1978. Reply to comment by Aaronson. Limnol Oceanogr. 23: 839–840.CrossRefGoogle Scholar
  62. Sharp, J. H., M. J Perry, E. N. Renger, and R. W. Eppley. 1980a. Phytoplankton rate processes in the oligotrophic waters of the central north Pacific Ocean. J. Plankton Res. 2: 335–353.CrossRefGoogle Scholar
  63. Sharp, J. H., P. A. Underbill, and A. C. Frake. 1980b. Carbon budgets in batch and continuous cultures: How can we understand natural physiology of marine phytoplankton? J. Plankton Res. 2: 213–222.CrossRefGoogle Scholar
  64. Sharp, J. H., P. A. Underbill, and D. J. Hughes. 1979. Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricoruntum. J. Phycol 15: 353–362.Google Scholar
  65. Sheldon, R. W., A. Prakash, and W. H. Sutcliffe. 1973. The production of particles in the surface waters of the ocean with particular reference to the Sargasso Sea. Limnol. Oceanogr. 18: 719–733.CrossRefGoogle Scholar
  66. Sheldon, R. W., and W. H. Sutcliffe. 1978. Generation times of 3 h for Sargasso Sea microplankton determined by ATP analysis. Limnol. Oceanogr. 23: 1051–1055.CrossRefGoogle Scholar
  67. Shifrin, N. S. 1980. The measurement of dissolved organic carbon released by phytoplankton. Estuaries 3: 230–233.CrossRefGoogle Scholar
  68. Sieburth, J. McN. 1977. International Heløgoland Symposium: Convenor’s report on the informal session of biomass and productivity of microorganisms in planktonic ecosystems. Helogol. Wiss. Meeresunters 30: 697–704.CrossRefGoogle Scholar
  69. Simek, E. 1981. Phytoplankton production in a marsh-dominated estuary. Ph.D. dissertation. University of Delaware.Google Scholar
  70. Smith, S. V. 1981. Marine macrophytes as a global carbon sink. Science 211: 838–840.ADSCrossRefGoogle Scholar
  71. Smith, W. O. 1977. The respiration of photosynthetic carbon in eutrophic areas of the ocean. J. Mar. Res. 35: 557–565.ADSGoogle Scholar
  72. Smith, W. O., R. T. Barber, and S. A. Huntsman. 1977. Primary production off the coast of northwest Africa: excretion of dissolved organic matter and its heterotrophic uptake. Deep-Sea Res. 24: 35–47.CrossRefGoogle Scholar
  73. Storch, T. A., and G. W. Saunders. 1978. Phytoplankton extracellular release and its relation to the seasonal cycle of dissolved organic carbon in a eutrophic lake. Limnol. Oceanogr. 23: 112–119.CrossRefGoogle Scholar
  74. Szyper, J. P., J. Hirota, J. Caperon, and D. A. Ziemann. 1976. Nutrient regeneration by the larger net zooplankton in the southern basin of Kaneohe Bay. Pac. Sci. 30: 363–372.Google Scholar
  75. Underbill, P. A. 1981. Steady state growth rate effects on the photosynthetic carbon budget and chemical composition of a marine diatom. Ph.D. dissertation, Univ. of Delaware.Google Scholar
  76. Venrick, E. L. 1974. The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre. Limnol. Oceanogr. 19: 437–445.CrossRefGoogle Scholar
  77. Webb, K. L., and R. E. Johannes. 1967. Studies of the release of dissolved free amino acids by marine zooplankton. Limnol. Oceanogr. 12: 376–382.CrossRefGoogle Scholar
  78. Wiebe, W. J., and D. F. Smith. 1977. Direct measurements of dissolved organic carbon release by phytoplankton and incorporation by microbeterotrophs. Mar. Biol. 42: 213–223.CrossRefGoogle Scholar
  79. Williams, P. J. leB. 1975. Biological and chemical aspects of dissolved organic material in sea water, pp. 301–362. In: J. P. Riley and G. Skirrow [eds.]. Chemical Oceanography, 2nd Edition, Vol. 2. Academic Press.Google Scholar
  80. Williams, P. J. leB. 1981a. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol. Acta. In press.Google Scholar
  81. Williams, P. J. leB. 1981b. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel. Meeresforsch. 5: 1–28.Google Scholar
  82. Williams, P. J. leB., R. C. T. Raine, and J. R. Bryan. 1979. Agreement between the 14c and oxygen methods of measuring phytoplankton production; reassessment of the photosynthetic quotient. Oceanol. Acta 2: 411–416.Google Scholar
  83. Williams, P. J. leB., and C. S. Yentsch. 1976. An examination of photosynthetic production, excretion of photosynthetic proudcts, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal, subtropical sea. Mar. Biol. 35: 31–40.CrossRefGoogle Scholar
  84. Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwich, and D. B. Botkin. 1978. The biota and the world carbon budget. Science 199: 141–146.ADSCrossRefGoogle Scholar
  85. Yentsch, C. S. 1980. Phytoplankton growth in the sea. A coalescence of disciplines, pp. 17–32. In: P. G. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jonathan H. Sharp
    • 1
  1. 1.College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations