Substrate Capture by Marine Heterotrophic Bacteria in Low Nutrient Waters

  • Richard Y. Morita
Part of the NATO Conference Series book series (NATOCS, volume 15)


Except in coastal areas and some isolated marine environments seawater can be classified as oligotrophic or even ultraoligotrophic. If the nearshore values for the dissolved organic carbon (DOC) are ignored, the DOC ranges from 0.3 to 1.2 mg C·liter−1 and in the deep sea, ca. 0.5 mg C·liter−1 (Riley and Chester 1971). Other values are cited by various authors in review articles dealing with organic matter in seawater (Menzel 1974, Williams 1975; Duursma 1965; Wangersky 1978) and in each instance, the values for DOC are low. The amount of particulate organic carbon (POC) is exceeded by the DOC by a factor of 10 to 20 (Riley and Chester 1971) and its value will depend on various factors. Approximately 1/5 of the particulate organic fraction is composed of living organisms. Although the amount of DOC and POC is not very great per unit volume, the total amount in the entire oceans is extremely huge. The reservoir of DOC and POC in the ocean is placed at 655 × 109 tons and 14 × 109 tons respectively, assuming the values of 0.5 mg C·liter−1 and 10 µg C·liter−1 respectively (Menzel 1974). The turnover time is 3, 300 years (Menzel 1974).


Particulate Organic Carbon Heterotrophic Bacterium Marine Bacterium Osmotic Shock Column Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, G. F. and J. Lever. 1970. Components of histidine transport: Histidine binding proteins and his P protein. Proc. Nat. Acad. Sci. 66: 1096–1103.ADSCrossRefGoogle Scholar
  2. Anraku, Y. 1967. The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli. J. Biol. Chem. 242: 793–800.Google Scholar
  3. Anraku, Y. 1968. Transport of sugars and amino acids in bacteria, II. Properties of galactose- and leucine-proteins. J. Biol. Chem. 243: 2123–3127.Google Scholar
  4. Azam, F., and R. E. Hodson. 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.CrossRefGoogle Scholar
  5. Bada, J. F., and C. Lee. 1977. Decomposition and an alteration of organic compounds in seawater. Mar. Chem. 5: 523–534.CrossRefGoogle Scholar
  6. Barasch, H., and Y. S. Halpern. 1971. Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12. Biochem. Biophys. Res. Commun. 45: 681–699.CrossRefGoogle Scholar
  7. Barber, R. T. 1968. Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220: 274–275.ADSCrossRefGoogle Scholar
  8. Baross, J. A., F. J. Hanus, R. P. Griffiths and R. Y. Morita. 1975. Nature of incorporated 14c material retained by sulfuric acid fixed bacteria in pure culture and in natural aquatic populations with trichloroacetic acid precipitates from the sample. J. Fish. Res. Board Can. 32: 1876–1879.CrossRefGoogle Scholar
  9. Bell, W., and R. Mitchell. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143: 265–277.CrossRefGoogle Scholar
  10. Britten, R. J., and F. T. McClure. 1962. The amino acid pool in Escherichia coli. Bacteriol. Rev. 26: 292–335.Google Scholar
  11. Carlile, M. H. 1980. Positioning mechanisms — The role of motility, taxis and trophism in the the life of microorganisms, pp. 54–74. D. C. Ellwood, N. J. Hedger, M. J. Latham, M. J. Lynch, and J. H. Slater [eds.]. Contemporary Microbial Ecology. Academic Press.Google Scholar
  12. Carlucci, A. F., and P. M. Williams. 1978. Simulated in situ growth rates of pelagic marine bacteria. Naturwissenschaften 65: 541–542.ADSCrossRefGoogle Scholar
  13. Craig, H. 1971. The deep metabolism: oxygen consumption in abyssal ocean water. J. Geophys. Res. 76: 5078–5086.ADSCrossRefGoogle Scholar
  14. Daley, R. J., and J. E. Robbie. 1975. Direct count of aquatic bacteria by a modified epifluorescent technique. Limnol. Oceanogr. 20: 875–881.CrossRefGoogle Scholar
  15. Duursma, E. K. 1965. The dissolved organic constituents of sea- water, pp. 433–475. J. P. Riley and G. Skirrow [eds.]. Chemical Oceanography, Vol. I. Academic Press.Google Scholar
  16. Geesey, G. G., and R. Y. Morita. 1979. Capture of arginine at low concentrations by a marine psychrophilic bacterium. Appl. Environ. Microbiol. 38: 1092–1097.Google Scholar
  17. Geesey, G. G., and R. Y. Morita. 1981. Relationship of cell envelope stability to substrate capture in a marine psychrophilic bacteria. Appl. Environ. Microbiol. 42: 533–540.Google Scholar
  18. Click, M. A. 1980. Substrate capture, uptake, and utilization of some amino acids by starved cells of a psychrophilic marine Vibrio. M.S. thesis, Oregon State Univ., Corvallis, Oregon.Google Scholar
  19. Gordon, D. C. 1970. Some studies on the distribution and composition of particulate carbon in the North Atlantic Ocean. Deep-Sea Res. 17: 233–243.Google Scholar
  20. Griffiths, R. P., J. A. Baross, F. J. Hanus, and R. Y. Morita. 1974. Some physical and chemical parameters affecting the formation and retention of glutamate pools in a marine psychrophilic bacterium. Z. Allg. Mikrobiol. 14: 359–369.CrossRefGoogle Scholar
  21. Hazelbauer, G. L., and J. Adler. 1971. Role of galactose binding protein in Chemotaxis of Escherichia coli toward galactose. Nat. New Biol. 230: 101–104.Google Scholar
  22. Hogg, R. W., and E. Englesberg. 1969. L-arabinose binding protein from Escherichia coli B/r. J. Bacteriol. 100: 423–432.Google Scholar
  23. Hoppe, H. G. 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography. Mar. Biol. 36: 291–302.CrossRefGoogle Scholar
  24. Hoppe, H. G. 1978. Relations between active bacteria and heterotrophic potential in the sea. Neth. J. Sea Res. 12: 78–98.ADSCrossRefGoogle Scholar
  25. Iwashima, A., A. Matsumura, and Y. Nose. 1971. Thiamine-binding of Escherichia coli. J. Bacteriol. 108: 1419–1421.Google Scholar
  26. Jannasch, H. W. 1979. Microbial ecology of aquatic low nutrient habitats, pp. 243–260. In: M. Shilo [ed.]. Strategies of Microbial Life in Extreme Environments. Dahlem Konferenzen, Verlag Chemie, Weinheim and New York.Google Scholar
  27. Kalckar, H. M. 1971. The periplasmic galactose binding protein of Escherichia coli. Science 174: 557–565.ADSCrossRefGoogle Scholar
  28. Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can, J. Microbiol. 25: 415–420.CrossRefGoogle Scholar
  29. Kuzuwa, H., K. Bronwell, and G. Gurloff. 1971. The phenylalanine- binding protein of Comamonas sp. (ATCC 11299a). J. Biol. Chem. 246: 6371–6380.Google Scholar
  30. Lee, C., and J. L. Bada. 1975. Amino acids in equatorial Pacific Ocean. Earth Planet. Sci. Lett. 26: 61–68.ADSCrossRefGoogle Scholar
  31. Medeczky, N., and H. Rosenberg. 1969. The binding and release of phosphate by a protein isolated from Escherichia coli. Biochim. Biophys. Acta 192: 369–371.CrossRefGoogle Scholar
  32. Menzel, D. W. 1970. The role of in situ decomposition of organic matter on the concentration of non-conservative properties in the sea. Deep-Sea Res. 17: 751–764.Google Scholar
  33. Menzel, D. W. 1974. Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter, pp. 659–678. E. D. Goldberg [ed.]. The Sea, Vol. 5. Wiley- Inter science Publ., John Wiley and Sons.Google Scholar
  34. Menzel, D. W., and J. J. Goering. 1966. The distribution of organic detritus in the ocean. Limnol. Oceanogr. 11: 333–337.CrossRefGoogle Scholar
  35. Menzel, D. W., and J. H. Ryther. 1970. Distribution and cycling of organic matter in the oceans, pp. 31–54. In: D. W. Hood [ed.]. Organic Matter in Natural Waters. Inst. Mar. Sci. Puhl., College, Alaska.Google Scholar
  36. Morita, R. Y. 1977. The role of microbes in the marine environment, pp. 445–456. In: N. R. Anderson and B. J. Zahurance [eds.]. Ocean Sound Scattering Prediction. Plenum Press, New York.Google Scholar
  37. Morita, R. Y. 1980. Microbial life in the deep sea. Can. J. Microbiol. 21: 1375–1385.CrossRefGoogle Scholar
  38. Morita, R. Y., and C. E. ZoBell. 1955. Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res. 3: 66–73.CrossRefGoogle Scholar
  39. Novitsky, J. A., and R. Y. Morita. 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32: 617–622.Google Scholar
  40. Pardee, A. B., and L. S. Prestige. 1966. Cell-free activity of a sulfate binding site involved in active transport. Proc. Nat. Acad. Sci. USA 55: 189–191.ADSCrossRefGoogle Scholar
  41. Piperno, J. R., and D. L. Oxender. 1966. Amino acid-binding protein released from Escherichia coli by osmotic shock. J. Biol. Chem. 241: 5732–5734.Google Scholar
  42. Riley, J. P. and R. Chester. 1971. Introduction of Marine Chemistry. Academic Press.Google Scholar
  43. Rosen, B. P., and L. A. Keppel. 1973. Present status of binding proteins that are released from Gram-negative bacteria by osmotic shock, pp. 209–239. L. Lieve [ed.]. Bacterial Membranes and Walls. Marcel Dekker, Inc., New York.Google Scholar
  44. Rosen, B. P., and F. D. Vasington. 1970. Relationship of the histidine binding protein and the histidine permease system in typhimurium. Red. Proc. Fed. Am. Soc. Exp. Biol. 29: 342.Google Scholar
  45. Schleif, R. 1969. An L-arabinose binding protein and arabinose permeation in Escherichia coli. J. Mol. Biol. 46: 185–196.CrossRefGoogle Scholar
  46. Seki, H., J. Skelding, and T. R. Parsons. 1968. Observations on the decomposition of marine sediment. Limnol. Oceanogr. 13: 440–447.CrossRefGoogle Scholar
  47. Shilo, M. 1979. Strategies of Microbial Life in Extreme Environments. Dahlem Konferenzen, Verlag Chemie, Weinheim and New York.Google Scholar
  48. Sieburth, J. McN. 1971. Distribution and activity of oceanic bacteria. Deep-Sea Res. 18: 1111–1121.Google Scholar
  49. Strickland, J. D. H., and T. R. S. Parsons. 1968. A practical handbook of sea water analysis. Fish. Res. Board Can. Bull. 167.Google Scholar
  50. Tabor, P. S., K. Ohwada and R. R. Colwell. 1981. Filterable marine bacteria in deep sea: Distribution, taxonomy and response to starvation. Microb. Ecol. 7: 67–83.CrossRefGoogle Scholar
  51. Taylor, R. T., S. A. Norrell and M. L. Hanna. 1972. Uptake of cyanocobalamin by Escherichia coli B: Some characteristics and evidence for a binding protein. Arch. Biochem. Biophys. 148: 366–381.CrossRefGoogle Scholar
  52. Tempest, D. W., and O. M. Neijssel. 1978. Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv. Microb. Ecol. 2: 105–153.CrossRefGoogle Scholar
  53. Torrella, F., and R. Y. Morita. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 41: 518–527.Google Scholar
  54. Turekian, K. K., J. K. Cochran, D. P. Kharkar, R. M. Cerrato, J. R. Vaisnys, H. L. Sanders, J. F. Grassle, and J. A. Allen. 1975. Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proc. Nat. Acad. Sci. 72: 2829–2832.ADSCrossRefGoogle Scholar
  55. Wangersky, P. J. 1978. Production of dissolved organic matter, pp. 115–220. O. Kinne [ed.]. Marine Ecology, Vol. IV. John Wiley and Sons.Google Scholar
  56. Ward, B. B., and M. J. Perry. 1980. Immunofluorescent assay for marine ammonium-oxidizing bacterium Nitrosococcus oceanus. Appl. Environ. Microbiol. 39: 913–918.Google Scholar
  57. Watson, S. W., T. J. Novitsky, H. L. Quinby and F. W. Valois. 1977. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol. 33: 940–946.Google Scholar
  58. Weiner, J. H., and L. A. Heppel. 1971. A binding protein for glutamine and its relation to active transport in Escherichia coli. J. Biol. Chem. 246: 6933–6941.Google Scholar
  59. Williams, P. J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates. J. Mar. Biol. Assoc. UK 50: 839–870.Google Scholar
  60. Williams, P. J. leB. 1975. Biological and chemical aspects of dissolved organic material in sea water, pp. 301–364. In; J. P. Riley and G. Skirrow [eds.]. Chemical Oceanography, Vol. 2. Academic Press.Google Scholar
  61. Williams, P. M., and L. I. Gordon. 1970. Carbon-13:carbon-12 ratios in dissolved and particulate organic matter in the sea. Deep-Sea Res. 17: 19–28.Google Scholar
  62. Williams, P. M., H. Oeschger and P. Kinny. 1969. Natural radiocarbon activity of dissolved organic carbon in the Northeast Pacific Ocean. Nature 224: 256–258.ADSCrossRefGoogle Scholar
  63. Zimmermann, R. 1977. Estimation of bacterial numbers and biomass by epifluorescence microscopy and scanning electron microscopy, pp. 103–120. In: G. Rheinheimer [ed.]. Microbial Ecology of a Brackish Water Environment. Springer-Verlag.Google Scholar
  64. Zimmermann, R., and L.-A. Meyer-Reil. 1974. A new method for fluorescence staining of bacterial populations on membrane filter. Kiel. Meeresforsch. 30: 24–27.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard Y. Morita
    • 1
  1. 1.Department of Microbiology, School of OceanographyOregon State UniversityCorvallisUSA

Personalised recommendations