Bacterial Biomass and Heterotrophic Activity in Sediments and Overlying Waters

  • Lutz-Arend Meyer-Reil
Part of the NATO Conference Series book series (NATOCS, volume 15)


Most studies of aquatic microbial ecology have been concerned with the water column. In comparison, little is known about the microbiology of sediments, although sediments are unquestionably an important part of coastal ecosystems. From the high bacterial biomass, which is about equal to the faunal standing crop (Dale 1974), it has been concluded that the bacteria have an important role in the nutrient cycles and the food web. Much of the research has been concentrated on nutrient cycles (nitrogen, sulfur) and methanogenesis, which will not be discussed in this connection. However, information on the microbiology of sediments (bacterial biomass, activity) is still limited. Most of the earlier publications deal with the enumeration and isolation of bacteria using the agar plate technique (e.g., Westheide 1968; Stevenson et al. 1974; Boeye et al. 1975; Litchfield et al. 1976; Rheinheimer 1977). However, bacteria growing on agar plates account for only a small fraction of the total number of bacteria present in sediments. A more direct insight into bacterial colonization and biomass in sediments was obtained by scanning electron microscopy (Weise and Rheinheimer 1978) or epifluorescence microscopy (e.g.. Dale 1974; Griffiths et al. 1978; Meyer-Reil et al. 1978; Jones 1980; Meyer-Reil and Faubel 1980). From these studies, the diversity of bacteria and their comparatively high biomass became obvious. In evaluating the role of bacteria as mineralizers and biomass producers, the determination of bacterial activity becomes important. However, only in a limited number of studies has the bacterial uptake of dissolved organic substrates been measured (Wood 1970; Harrison et al. 1971; Hall et al. 1972; Christian and Wiebe 1978; Griffiths et al. 1978; Hanson and Gardner 1978; Meyer-Reil et al. 1978, 1980; Litchfield et.a1. 1979; Novitsky and Kepkay 1981). Reports on the degradation of particulate organic matter by bacteria in sediments is even sparser (Ayyakkannu and Chandramohan 1971; Maeda and Taga 1973; Oshrain and Wiebe 1979; Sayler et a1. 1979; King and K1ug 1980, Meyer-Reil 1981).


Particulate Organic Matter Particulate Organic Carbon Overlie Water Bacterial Biomass Microbiological Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansbaek, J., and T. H. Blackburn. 1980. A method for the analysis of acetate turnover in a coastal marine sediment. Microb. Ecol. 5: 253–264.CrossRefGoogle Scholar
  2. Ayyakkannu, K., and D. Chandramohan. 1971. Occurrence and distribution of phosphate solubilizing bacteria and phosphatase in marine sediments at Porto Novo. Mar. Biol. 11: 201–205.CrossRefGoogle Scholar
  3. Boeye, A., M. Wayenhergh, and M. Aerts. 1975. Density and composition of heterotrophic bacterial populations In North Sea sediments. Mar. Biol. 32: 263–270.CrossRefGoogle Scholar
  4. Burns, R. G. 1980. Microbial adhesion to soil surfaces: consequences for growth and enzyme activities, pp. 249–262. In: R. C. W. Berkeley, J. M. Lynch, J. Meiling, P. R. Rutter, and B. Vincent [eds.], Microbial Adhesion to Surfaces. Society of Chemical Industry, Ellis Horwood Limited, London.Google Scholar
  5. Christian, R. R., and W. J. Wlebe. 1978. Anaerobic microbial community metabolism In Spartlna alternlflora soils. Llmnol. Oceanogr. 23: 328–336.CrossRefGoogle Scholar
  6. Corpe, W. A. 1974. Perlphytlc marine bacteria and the formation of microbial films on solid surfaces, pp. 397–417. In R. R. Colwell and R. Y. Morlta [eds.], Effect of the Ocean Environment on Microbial Activities. University Park Press, Baltimore.Google Scholar
  7. Corpe, W. A., and H. Winters. 1972. Hydrolytlc enzymes of some perlphytlc bacteria. Can. J. Microbiol. 18: 1483–1490.CrossRefGoogle Scholar
  8. Daatselaar, M. C. C., and W. Harder. 1974. Some aspects of the regulation of the production of extracellular proteolytic enzymes of a marine bacterium. Arch. Microbiol. 101: 31–34.CrossRefGoogle Scholar
  9. Dale, N. G. 1974. Bacteria in intertidal sediments: Factors related to their distribution. Llmnol. Oceanogr. 19: 509–518.CrossRefGoogle Scholar
  10. Faubel, A., and L.-A. Meyer-Reil. 1981. Enzymatic decomposition of particulate organic matter by melofauna. Kieler Meeresforsch. Sonderh. 5: 429–430.Google Scholar
  11. Geesey, G. G., and R. Y. Morlta. 1979. Capture of arglnine at low concentrations by a marine psychrophlllc bacterium. Appl. Environ. Microbiol. 38: 1092–1097.Google Scholar
  12. Gerlach, S. A. 1978. Food-chain relationships in subtldal sllty sand marine sediments and the role of melofauna in stimulating bacterial productivity. Oecologla 33: 55–69.CrossRefGoogle Scholar
  13. Gocke, K. 1976. Respiration von gelösten organischen Verbindungen durch natürliche Mikroorganismen populatlonen. Ein Vergleich zwischen verschiedenen Biotopen. Mar. Blol. 35: 375–383.Google Scholar
  14. Gocke, K., R. Dawson, and G. Liebezeit. 1981. Availability of dissolved free glucose to heterotrophic microorganisms. Mar. Blol. 62: 209–216.CrossRefGoogle Scholar
  15. Griffiths, R. P., S. S. Hayasaka, T. M. McNamara, and R. Y. Morlta. 1978. Relative microbial activity and bacterial concentrations in water and sediment samples taken in the Beaufort Sea. Can. J. Microbiol. 24: 1217–1226.CrossRefGoogle Scholar
  16. Gunkel, W. 1964. Die Verwendung des Ultra-Turrax zur Aufteilung von Bakterienaggregaten in marinen Proben. Helgol. Wiss. Meeresunters. 11: 287–295.CrossRefGoogle Scholar
  17. Hall, K. J., P. M. Kleiber, and I. Yesaki. 1972. Heterotrophic uptake of organic solutes by microorganisms in the sediment. Mem. 1st. Ital. Idroblol. 29(Suppl.): 441–471.Google Scholar
  18. Hanson, R. B., and W. S. Gardner. 1978. Uptake and metabolism of two amino acids by anaerobic microorganisms in four diverse salt-marsh soils. Mar. Blol. 46: 101–107.CrossRefGoogle Scholar
  19. Hargrave, B. T. 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Llmnol. Oceanogr. 17: 583–596.CrossRefGoogle Scholar
  20. Harrison, M. J., R. T. Wright, and R. Y. Morlta. 1971. Method for measuring mineralization In lake sediments. Appl. Microbiol. 21: 698–702.Google Scholar
  21. Jones, J. G. 1980. Some differences In the microbiology of profundal and littoral lake sediments. J. Gen. Microbiol. 117: 285–292.Google Scholar
  22. Kepfcay, P. E., R. C. Cooke, and J. A. Novltsky. 1979. Microbial autotrophy: A primary source of organic carbon In marine sediments. Science 204: 68–69.ADSCrossRefGoogle Scholar
  23. Kim, J., and C. E. ZoBell. 1974. Occurrence and activities of cell- free enzymes in oceanic environments, pp. 368–385. In; R. R. Colwell and R. Y. Morlta [eds.], Effect of the Ocean Environment on Microbial Activities. University Park Press, Baltimore.Google Scholar
  24. King, G. M., and M. J. Klug. 1980. Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo County, Michigan. Appl. Environ. Microbiol. 39: 950–956.Google Scholar
  25. King, G. M., and M. J. Klug. 1982. Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation. Appl. Environ. Microbiol. 44: 1308–1317.Google Scholar
  26. Krambeck, C. 1979. Applicability and limitations of the Michaells- Menten equation in microbial ecology. Arch. Hydrobiol. Beih. Ergebn. Llmnol. 12: 64–76.Google Scholar
  27. Krambeck, C., H.-J. Krambeck, and J. Overbeck. 1981. Microcomputer- assisted biomass determination of plankton bacteria on scanning electron micrographs. Appl. Environ. Microbiol. 42: 142–149.Google Scholar
  28. Litchfield, C. D., M. A. Devanas, J. Zindulis, C. E. Carty. J. P. Nakas, and E. L. Martin. 1979. Application of the 14C organic mineralization technique to marine sediments, pp. 128–147. In: C. D. Litchfield and P. L. Seyfried [eds.], Methodology for Biomass Determinations and Microbial Activities in Sediments. American Society for Testing and Materials, Philadelphia.Google Scholar
  29. Litchfield, C. D., J. P. Nakas, and R. H. Vreeland. 1976. Bacterial flux in some New Jersey estuarine sediments. Am. Soc. Llmnol. Oceanogr. Spec. Symp. 2: 340–354.Google Scholar
  30. Little, J. E., R. E. Sjogren, and G. R. Carson. 1979. Measurement of proteolysis in natural waters. Appl. Environ, Microbiol. 37: 900–908.Google Scholar
  31. Maeda, M., and N. Taga. 1973. Deoxyrlbonuclease activity in sea- water and sediment. Mar. Biol. 20: 58–63.CrossRefGoogle Scholar
  32. Meadows, P. S., and J. G. Anderson. 1966. Micro-organisms attached to marine and freshwater sand grains. Nature, Lond. 212: 1059–1060.ADSCrossRefGoogle Scholar
  33. Meyer-Reil, L.-A. 1977. Bacterial growth rates and biomass production, pp. 223–236. In G. Rheinheimer [ed.]. Microbial Ecology of a Brackish Water Environment. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  34. Meyer-Reil, L.-A. 1978. Uptake of glucose by bacteria in the sediment. Mar. Biol. 44: 293–298.CrossRefGoogle Scholar
  35. Meyer-Reil, L.-A. 1981. Enzymatic decomposition of proteins and carbohydrates in marine sediments: Methodology and field observations during spring. Kiel. Meeresforsch. Sonderh. 5: 311–317.Google Scholar
  36. Meyer-Reil, L.-A., M. Hölter, G. Liebezeit, and W. Schramm. 1979. Short-term variations in microbiological and chemical parameters. Mar. Ecol. Prog. Ser. 1: 1–6.CrossRefGoogle Scholar
  37. Meyer-Reil, L.-A., M. Hölter, R. Dawson, G. Liebezeit, H. Szwerinski, and K. Wolter. 1980. Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl. Environ. Microbiol. 39: 797–802.Google Scholar
  38. Meyer-Reil, L.-A., R. Dawson, G. Liebezeit, and H. Tiedge. 1978. Fluctuations and interactions of bacterial activity in sandy beach sediments and overlying waters. Mar. Biol. 48: 161–171.CrossRefGoogle Scholar
  39. Meyer-Reil, L.-A., and A. Faubel. 1980. Uptake of organic matter by meiofauna organisms and interrelationships with bacteria. Mar. Ecol. Prog. Ser. 3: 251–256.CrossRefGoogle Scholar
  40. Meyer-Reil, L.-A., W. Schramm, and G. Wefer. 1981. Microbiology of a tropical coral reef system (Mactan, Philippines). Kiel. Meeresforsch. Sonderh. 5: 431–432.Google Scholar
  41. Moriarty, D. J. W. 1980. Measurement of bacterial biomass in sandy sediments, pp. 131–139. In: P. A. Trudinger, M. R. Walter, and B. J. Ralph [eds.], Biogeochemistry of Ancient and Modern Environments. Australian Academy of Science, Canberra, and Springer-Verlag, Berlin.Google Scholar
  42. Novitsky, J. A., and P. E. Kepkay. 1981. Patterns of microbial heterotrophy through changing environments in a marine sediment. Mar. Ecol. Prog. Ser. 4: 1–7.CrossRefGoogle Scholar
  43. Oshrain, R. L., and W. J. Wiebe. 1979. Arylsulfatase activity in salt marsh soils. Appl. Environ. Microbiol. 38: 337–340.Google Scholar
  44. Reichgott, M., and L. H. Stevenson. 1978. Microbiological and physical properties of salt marsh and microecosystem sediments. Appl. Environ. Microbiol. 36: 662–667.Google Scholar
  45. Rheinheimer, G. 1977. Bakteriologisch-ökologische Untersuchungen in Sandstränden an Nord- und Ostsee. Bot. Mar. 20: 385–400.CrossRefGoogle Scholar
  46. Rheinheimer, G. 1980. Aquatic Microbiology. John Wiley and Sons, New York. 235 p.Google Scholar
  47. Sayler, G. S., M. Puzissi and M. Silver. 1979. Alkaline phosphatase assay for freshwater sediments: application to perturbed sediment systems. Appl. Environ. Microbiol. 38: 922–927.Google Scholar
  48. Smetacek, V., B. von Bodungen. K. von Bröckel, and B. Zeitzschel. 1976. The plankton tower. II. Release of nutrients from sediments due to changes in the density of bottom water. Mar. Biol. 34: 373–378.CrossRefGoogle Scholar
  49. Stevenson, L. H., C. E. Millwood, and B. H. Hebeler. 1974. Aerobic heterotrophic bacterial populations in estuarine water and sediments, pp. 268–285. In: R. R. Colwell [ed.], Effect of the Ocean Environment on Microbial Activities. University Park Press, Baltimore.Google Scholar
  50. van Es, F. B., and L. -A. Meyer-Reil. 1982. Biomass and metabolic activity of heterotrophic marine bacteria. Adv. Microb. Ecol. 6: 111–170.Google Scholar
  51. Weise, W., and G. Rheinheimer. 1978. Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microb. Ecol. 4: 175–188.CrossRefGoogle Scholar
  52. Weise, W., and G. Rheinheimer. 1979. Fluroeszenzmikroskopische Untersuchungen über die Bakterienbesiedlung mariner Sandsedimente. Bot. Mar. 22: 99–106.CrossRefGoogle Scholar
  53. Westheide, W. 1968. Zur quantitativen Verteilung von Bakterien und Hefen in einem Gezeitenstrand der Nordseeküste. Mar. Biol. 1: 336–347.CrossRefGoogle Scholar
  54. Wood, L. W. 1970. The role of estuarine sedimènt microorganisms in the uptake of organic solutes under aerobic conditions. Ph.D. thesis, North Carolina State University at Raleigh.Google Scholar
  55. Wright, R. T. 1973. Some difficulties in using 14C-organic solutes to measure heterotrophic bacterial activity, pp. 199–217. In; L. H. Stevenson and R. R. Colwell [eds.], Estuarine Microbial Ecology. University of South Carolina Press, Columbia.Google Scholar
  56. ZoBell, C. E. 1938. Studies on the bacterial flora of marine bottom sediments. J. Sed.. Petrol. 8: 10–18.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lutz-Arend Meyer-Reil
    • 1
  1. 1.Institut für Meereskunde, Abteilung Marine MikrobiologieUniversität KielKielFederal Republic of Germany

Personalised recommendations