Aspects of Measuring Bacterial Activities in the Deep Ocean

  • Holger W. Jannasch
Part of the NATO Conference Series book series (NATOCS, volume 15)


Studies in deep sea biology commonly deal with depths well below the light-affected surface waters and the nutrient and temperature discontinuities of the thermocline. If the 1000 meter depth horizon is arbitrarily taken as the start of the deep sea, it still constitutes 75% of the ocean by volume and 88% by area. Of these figures, 0.1% and 0.2% respectively correspond to the deep sea trenches from 6000 meters to the greatest depth of approximately 11,000 meters. Although dependent on primary input of energy, carbon, and nutrients from surface water and land run-off, the deep sea contributes considerably by its sheer volume to the global biochemical cycles of elements. Much of this activity must be attributed to microorganisms, but their low and discontinuous rates of metabolism make direct measurements more difficult in the pelagic and deep ocean than in other parts of the biosphere.


Particulate Organic Carbon Deep Ocean Bacterial Activity Hydrothermal Vent Hydrogen Sulfide Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballard, R. D. 1977. Notes on a major oceanographic find. Oceanus 20: 35–44.Google Scholar
  2. Baross, J. A., and R. Y. Morita. 1978. Microbial life at low temperatures: ecological aspects, pp. 9–71. In: J. D. Kushner [ed.]. Microbial Life in Extreme Environments. Academic Press, New York.Google Scholar
  3. Boss, K. J., and R. D. Turner. 1980. The giant white clam from the Galapagos Rift Calyptogena magnifica species novum. Malacologia 20: 161–194.Google Scholar
  4. Brauer, F. W. [ed.]. 1972. Barbiology and the Experimental Biology of the Deep Sea. North Carolina Sea Grant Program., Univ. North Carolina, Chapel Hill. 428 pp.Google Scholar
  5. Brewer, P. G., Y. Nozaki, D. W. Spencer, and A. P. Fleer. 1980. Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes. J. Mar. Res. 38: 703–728.Google Scholar
  6. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, and J. B. Waterbury. 1981. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340–341.ADSCrossRefGoogle Scholar
  7. Corliss, J. B., J. Drmond, L. I. Gordon, J. M. Edmond, R. P. Von Herzen, R. D. Ballard, K. Green, D. Williams, A. Bainbridge, K. Crane, and T. H. van Andel. 1979. Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.ADSCrossRefGoogle Scholar
  8. Daley, R. J., and J. E. Robbie. 1975. Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20: 875–882.CrossRefGoogle Scholar
  9. Dawson, R., and K. Gocke. 1978. Heterotrophic activity in comparison to free amino acid concentrations in Baltic seawater samples. Oceanol. Acta 1: 45–54.Google Scholar
  10. Deming, J. W., P. S. Tabor, and R. R. Colwell. 1981. Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microb. Ecol. 7: 85–94.CrossRefGoogle Scholar
  11. Dietz, A. S., and A. A. Yayanos. 1978. Silica gel media for isolating and studying bacteria under hydrostatic pressure. Appl. Environ. Microbiol. 36: 966–968.Google Scholar
  12. Edmond, J. M., C. Measures, R. E. McDuff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon, and J. B. Corliss. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data. Earth Planet. Sei. Lett. 46: 1–18.ADSCrossRefGoogle Scholar
  13. Felbeck, H. 1981. Chemoautotrohic potentials of the hydrothermal vent tube worm, Riftia pachyptila (Vestimentifera). Science 213: 336–338.ADSCrossRefGoogle Scholar
  14. Haedrich, R. L., and R. T. Rowe. 1977. Megafaunal biomass in the deep sea. Nature 29: 141–142.ADSCrossRefGoogle Scholar
  15. Herbert, D., R. Elsworth, and R. C. Telling. 1956. The continuous culture of bacteria: a theoretical and experimental study. J. Gen, Microbiol. 14: 601–622.Google Scholar
  16. Hinga, K. R., J. McN. Sieburth, and G. R. Heath. 1979. The supply and use of organic material at the deep sea floor. J. Mar. Res. 37: 557–579.Google Scholar
  17. Honjo, S. 1978. Sedimentation of materials in the Sargasso Sea at a 5367 m deep station. J. Mar. Res. 36: 469–492.Google Scholar
  18. Jannasch, H. W. 1967. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12: 264–271.CrossRefGoogle Scholar
  19. Jannasch, H. W. 1978. Experiments in deep-sea microbiology. Oceanus 21: 50–57.Google Scholar
  20. Jannasch, H. W. 1979. Microbial ecology of aquatic low nutrient habitats, pp. 243–260. In: M. Shilo [ed.], Strategies of Microbial Life in Extreme Environments. Life Sei. Res. Rept. 13, Verlag Chemie, Weinheim/New York.Google Scholar
  21. Jannasch, H. W. 1983. Microbial processes at deep sea hydrothermal vents. In P. A. Rona et al., [eds.]. Hydrothermal Processes at Sea Floor Spreading Centers. Plenum Press, New York. In press.Google Scholar
  22. Jannasch, H. W., and C. O. Wirsen. 1973. Deep-sea microorganisms: in situ response to nutrient enrichment. Science 180: 641–643.ADSCrossRefGoogle Scholar
  23. Jannasch, H. W., and C. O. Wirsen. 1977. Retrieval of concentrated and undecompressed microbial populations from the deep sea. Appl. Environ. Microbiol. 33: 642–646.Google Scholar
  24. Jannasch, H. W., and C. O. Wirsen. 1979. Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29: 592–598.CrossRefGoogle Scholar
  25. Jannasch, H. W., and C. O. Wirsen. 1981. Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41: 528–538.Google Scholar
  26. Jannasch, H. W., and C. O. Wirsen. 1982a. Microbial activity in undecompressed and decompressed deep sea water samples. Appl. Environ. Microbiol. In press.Google Scholar
  27. Jannasch, H. W., and C. O. Wirsen. 1982b. Microbiology of the deep sea. In G. T. Rowe [ed.], The Sea, Vol. 8, Deep Sea Biology. John Wiley, New York. In press.Google Scholar
  28. Jannasch, H. W., C. O. Wirsen, and C. D. Taylor. 1976. Undecompressed microbial populations from the deep sea. Appl. Environ. Microbiol. 32: 360–367.Google Scholar
  29. Jannasch, H. W., C. O. Wirsen, and C. L. Winget. 1973. A bacteriological, pressure-retaining, deep-sea sampler and culture vessel. Deep-Sea Res. 20: 661–664.Google Scholar
  30. Jones, M. L. 1981. Riftia pachyptila, n. gen., n. sp., the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proc. Biol. Soc. Washington. 93: 1295–1313.Google Scholar
  31. Karl, D. M. 1979. Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. Environ. Microbiol. 39: 850–860.Google Scholar
  32. Karl, D. M. 1980. Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev. 44: 739–796.Google Scholar
  33. Karl, D. M. 1981. Simultaneous measurements of rates of RNA and DNA syntheses for estimating growth and cell division of aquatic microbial populations. Appl. Environ. Microbiol. 42: 802–810.Google Scholar
  34. Karl, D. M., C. O. Wirsen, and H. W. Jannasch. 1980. Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.ADSGoogle Scholar
  35. Krambeck, C., H. J. Krambeck, and J. Overbeck. 1981. Microcomputer- assisted biomass determination of plankton bacteria on scanning electron micrographs. Appl. Environ. Microbiol. 42: 142–149.Google Scholar
  36. Landau, J. V., and D. H. Pope. 1980. Recent advances in the area of barotolerant protein synthesis in bacteria and implications concerning barotolerant and barophilic growth. Adv. Aquat. Microbiol. 2: 49–76.Google Scholar
  37. Lee, C., and L. Bada. 1975. Amino acids in equatorial ocean water. Earth Planet. Sei. Lett. 26: 61–68.ADSCrossRefGoogle Scholar
  38. Leigh, J. A., and W. J. Jones. 1983. A new extremely thermophilic methanogen from a submarine hydrothermal vent. Am. Soc. Microbiol., Proc. Ann. Meeting. In press.Google Scholar
  39. Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res. 24: 857–863.CrossRefGoogle Scholar
  40. Marquis, R. E., and P. Matsumura. 1978. Microbial life under pressure. In; D. J. Kushner [ed.]. Microbial Life in Extreme Environments. Academic Press, New York.Google Scholar
  41. Moriarty, D. J. W. 1983. Measurements of bacterial growth rates in some marine systems using the incorporation of tritiated thymidine into DNA. In: J. E. Hobbie and P. J. leB. Williams [eds.]. Heterotrophic Activity in the Sea. Plenum Press, New York.Google Scholar
  42. Morita, R. Y. 1972. Pressure. 1. Bacteria, fungi and blue-green algae, pp. 1361–1388. In: O. Kinne [ed.]. Marine Ecology, Vol. 1. John Wiley Interscience Publications.Google Scholar
  43. Morita, R. Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, pp. 279–298. In T. Gray and J. R. Postgate [eds.]. Survival of Vegetative Microbes. 26th Symp. Soc. Gen. Microbiol., Cambridge Univ. Press.Google Scholar
  44. Mottl, M. J., H. D. Holland and R. F. Corr. 1979. Chemical exchange during hydrothermal alteration of basalt by seawater - II. Experimental results for Fe, Mn, and sulfur species. Geochim. Cosmochim. Acta 43: 869–884.ADSCrossRefGoogle Scholar
  45. Poindexter, J. S. 1981. Oligotrophy: feast and famine existence. Adv. Microb. Ecol. 5: 67–93.Google Scholar
  46. Ruby, E. G., C. O. Wirsen and H. W. Jannasch. 1981. Chemolitho- trophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl. Environ. Microbiol. 42: 317–324.Google Scholar
  47. Sleigh, M. A., and A. G. MacDonald [eds.]. 1972. The Effects of Pressure on Organisms. Symp. Soc. Exper. Biol. XXVI. Academic Press, New York. 516 pp.Google Scholar
  48. Strugger, S. 1949. Fluoreszenzmikroskopie und Mikrobiologie. M. and H. Schaper, Hannover.Google Scholar
  49. Tabor, P. S., and R. R. Colwell. 1976. Initial investigations with a deep ocean in situ sampler. Proc. MTS/IEEE OCEANS ‘76, Washington, D.C., 13D-1–13D-4.Google Scholar
  50. Tabor, P. S., J. W. Deming, K. Ohwada, H. Davis, M. Waxman, and R. R. Colwell. 1981. A pressure-retaining deep ocean sampler and transfer system for measurements of microbial activity in the deep sea. Microb. Ecol. 7: 51–65.CrossRefGoogle Scholar
  51. Tuttle, J. H., and H. W. Jannasch. 1976. Microbial utilization of thiosulfate in the deep sea. Limnol. Oceanogr. 21: 697–701.CrossRefGoogle Scholar
  52. Watson, S. W., T. J. Novitsky, H. L. Quinby, and F. W. Valois. 1977. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol. 33: 940–946.Google Scholar
  53. Welhan, J. A., and H. Craig. 1979. Methane and hydrogen in East Pacific Rise hydrothermal fluid. Geophys. Res. Lett. 6: 829.ADSCrossRefGoogle Scholar
  54. Wirsen, C. O., and H. W. Jannasch. 1975. Activity of marine psychrophilic bacteria at elevated hydrostatic pressures and low temperatures. Mar. Biol. 31: 201–208.CrossRefGoogle Scholar
  55. Yayanos, A. A., A. S. Dietz, and R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205: 808–810.ADSCrossRefGoogle Scholar
  56. Yayanos, A. A., A. S. Dietz and R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana Trench. Proc. Nat. Acad. Sei. 78. In press.Google Scholar
  57. Zimmerman, R., and L.-A. Meyer-Reil. 1974. A new method for fluorescence staining of bacterial populations on membrane filters. Kiel. Meeresforsch. 30: 24–27.Google Scholar
  58. ZoBell, C. E. 1968. Bacterial life in the deep sea. Bull. Misaki Mar. Biol. Inst., Kyoto Univ. 12: 77–96.Google Scholar
  59. ZoBell, C. E. 1970. Pressure effects on morphology and life processes of bacteria, pp. 85–130. In: H. M. Zimmerman [ed.], High Pressure Effects on Cellular Processes. Academic Press, New York.Google Scholar
  60. ZoBell, C. E., and F. H. Johnson. 1949. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol. 57: 179–189.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Holger W. Jannasch
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations