Lipid Indicators of Microbial Activity in Marine Sediments

  • S. C. Brassell
  • G. Eglinton
Part of the NATO Conference Series book series (NATOCS, volume 15)


Detailed analyses at the molecular level of the organic matter present in natural systems, such as oceanic waters and sediments, have been possible only in recent years with the advent of powerful chromatographic and spectrometric techniques. In this article, we shall address the subject of this conference from our particular viewpoint — that of the organic geochemist. In the widest sense, organic geochemistry is concerned with the fate of carbon compounds in space and through time. It offers unique insights into microbial processes and activity from studies of the nature and fate of the organic matter contributed to, and resident in, certain marine sediments. Although much information on proteins, carbohydrates and other highly significant classes of biomolecules has been collected, by far the most coherent picture is given by the lipids — the storage fats and membrane components with hydrophobic structures generally resistant to degradation and with carbon skeletons well suited to preservation as ‘chemical fossils’ (Eglinton and Calvin 1967).


Fecal Pellet Sediment Trap Sedimentary Organic Matter Glyceryl Ether Methanogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albaiges, J, 1980. Identification and geochemical significance of long chain acyclic isoprenoid hydrocarbons in crude oils, p. 19. In; A. G. Douglas and J. R. Maxwell [eds.]. Advances in Organic Geochemistry 1979. Pergamon Press, Oxford.Google Scholar
  2. Ballantine, J. A., A. Lavis, and R. J. Morris. 1979. Sterols of the phytoplankton - effects of illumination and growth stage. Phytochem. 18: 1459.CrossRefGoogle Scholar
  3. Boon, J. J. 1978. Molecular biogeochemistry of lipids in four natural environments. Ph.D. thesis. University of Delft.Google Scholar
  4. Boon, J. J., J. W. De Leeuw, and P. A. Schenck. 1975. Organic geochemistry of Walvis Bay diatomaceous ooze. I. Occurrence and significance of the fatty acids. Geochim Cosmochim. Acta 39: 1559.ADSCrossRefGoogle Scholar
  5. Boon, J. J., W. I. C. Rijpstra, F. DeLange, J. W. De Leeuw, M. Yoshioka, and Y. Shimizu. 1979. The Black Sea sterol - A molecular fossil for dinoflagellate blooms. Nature 277: 159.CrossRefGoogle Scholar
  6. Brassell, S. C. 1980. The lipids of deep-sea sediments: their origin and fate in the Japan Trench. Ph.D. thesis. University of Bristol.Google Scholar
  7. Brassell, S. C., G. Eglinton, J. R. Maxwell, and R. P. Philp. 1978. Natural background of alkanes in the aquatic environment, p. 69. In: O. Hutzinger et al. [eds.]. Aquatic Pollutants, Transformation and Biological Effects. Pergamon Press, Oxford.Google Scholar
  8. Brassell, S. C., P. A. Comet, G. Eglinton, P. J. Isaacson, J. McEvoy, J. R. Maxwell, I. D. Thomson, P. J. C. Tibbetts, and J. K. Volkman. The origin and fate of lipids in the Japan Trench, p. 375, In: A. G. Douglas and J. R. Maxwell [eds.]. Advances in Organic Geochemistry 1979. Pergamon Press, Oxford.Google Scholar
  9. Brassell, S. C., A. M. K. Wardroper, I. D. Thomson, J. R. Maxwell, and G. Eglinton. 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 290: 693.ADSCrossRefGoogle Scholar
  10. Brassell, S. C., V. J. Howell, A. P. Gowar, and G. Eglinton. In press. Lipid geochemistry of Cretaceous sediments recovered by the Deep Sea Drilling Project, In: M. Bjory et al. [eds.]. Advances in Organic Geochemistry 1981. Heydon and Son, London.Google Scholar
  11. Cardoso, J. N., G. Eglinton, and P. J. Holloway. 1977. The use of cutin acids in the recognition of higher plant contribution to recent sediments, p. 273. In; R. Campos and J. Goni [eds.], Advances in Organic Geochemistry 1975. Enadimsa, Madrid.Google Scholar
  12. Carlson, R. M. K., S. Popov, I. Massey, C. Delseth, E. Ayanoglu, T. H. Varkony, and C. Djerassi. 1978. Minor and trace sterols in marine invertebrates. VI. Occurrence and possible origins of sterols possessing unusually short hydrocarbon side chains. Biorg. Chem. 7: 453.CrossRefGoogle Scholar
  13. Chappe, B., P. Albrecht, and W. Michaelis. 1982. Polar lipids of Archaebacteria in sediments and petroleums. Science 217: 65.ADSCrossRefGoogle Scholar
  14. Chappe, B., W. Michaelis, and P. Albrecht. 1980. Molecular fossils of Archaebacteria as selective degradation products of kerogen, p. 265. In A. G. Douglas and J. R. Maxwell [eds.]. Advances in Organic Geochemistry 1979. Pergamon Press, Oxford.Google Scholar
  15. Charney, W., and H. L Herzog. 1967. Microbial Transformations of Steroids. Academic Press, New York.Google Scholar
  16. Corbet, B., P. Albrecht, and G. Ourisson. 1980. Photochemical or photourimetic fossil triterpenoids in sediments and petroleum. J. Amer. Chem. Soc. 102: 1171.CrossRefGoogle Scholar
  17. Cranwell, P. A. 1973. Branched-chain and cyclopropanoid acids in a recent sediment. Chem. Geol. 11: 307.CrossRefGoogle Scholar
  18. Dastillung, M., and P. Albrecht. 1977. Δ2-sterenes as diagenetic intermediates in sediments. Nature 268: 678.ADSCrossRefGoogle Scholar
  19. Dastillung, M., P. Albrecht, and G. Ourisson. 1980. Aliphatic and polycyclic ketones in sediments. C27-C35 ketones and aldehydes of the hopanes series. J. Chem. Res.(S) 166: (M) 2325.Google Scholar
  20. Dastillung, M., P. Albrecht, and M. J. Tissier. Hydrocarbures satures est insatures des sédiments, p. 209. In: Geochemie Organique des Sediments Marin Profond. Orgon I: Mer de Norvège. CNRS, Paris.Google Scholar
  21. Deuser, W. G. 1971. Organic carbon budget of the Black Sea. Deep- Sea Res. 18: 995.Google Scholar
  22. Devon, T. K., and A. I. Scott. 1972. Handbook of Naturally-Occurring Compounds-II. Terpenes. Academic Press, New York.Google Scholar
  23. Edmunds, K. L. H., S.C. Brassell, and G. Eglinton. 1980. The short- term diagenetic fate of 5a-cholestan-3i?-ol in situ radiolabelled incubations in algal mats, p. 427. In: A. G. Douglas and J. R. Maxwell [eds.]. Advances in Organic Geochemistry 1979. Pergamon Press, Oxford.Google Scholar
  24. Eglinton, G., and M. Calvin. 1967. Chemical fossils. Sei. Amer. 216: 32.ADSGoogle Scholar
  25. Eglinton, G., and R. J. Hamilton. 1967. Leaf epicuticular waxes. Science 156: 1322.ADSCrossRefGoogle Scholar
  26. Ensminger, A. 1977. Evolution de composes polycycliques sédimen- taires. Ph.D. thesis. University of Strasbourg.Google Scholar
  27. Gagosian, R. B., and J. W. Farrington. 1978. Sterenes in surface sediments from the southwest African shelf and slope. Geochim. Cosmochim. Acta 42: 1091.ADSCrossRefGoogle Scholar
  28. Gagosian, R. B., and F. Heinzer 1979. Stenols and stanols in the oxic and anoxic waters of the Black Sea. Geochim. Cosmochim. Acta 43: 471.ADSCrossRefGoogle Scholar
  29. Gaskell, S. J., and G. Eglinton. 1975. Rapid hydrogenation of sterols in a contemporary lacustrine sediment. Nature 254: 209.ADSCrossRefGoogle Scholar
  30. Gaskell, S. J., M. M. Rhead, P. W. Brooks, and G. Eglinton. 1976. Diagenesis of oleic acid in an estuarine sediment. Chem. Geol. 17: 319.CrossRefGoogle Scholar
  31. Gelpi, E., H. Schneider, J. Mann, and J. Oro. 1980. Olefins of high molecular weight in two microscopic algae. Phytochem. 8: 603.Google Scholar
  32. Holzer, G., J. Oro, and T. G. Tornabene. 1979. Gas chromatographic mass spectrometric analysis of neutral lipids from methanogenic and thermoacidophilic bacteria J. Chromatogr. 186: 795.CrossRefGoogle Scholar
  33. Howard, D. L. 1980. Polycyclic triterpenes of the anaerobic photosynthetic bacterium Rhodomicrobium vanielli. Ph.D. thesis, University of California, Los Angeles.Google Scholar
  34. Johnson, R. W., and J. A. Calder. 1973. Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment. Geochim. Cosmochim. Acta 37: 1943.ADSCrossRefGoogle Scholar
  35. Kawamura, K., and R. Ishiwatari. 1981. Polyunsaturated fatty acids in a lacustrine sediment as a possible indicator of paleoclimate. Geochim. Cosmochim. Acta 45: 149.ADSCrossRefGoogle Scholar
  36. Mackenzie, A. S., R. L. Patience, J. R. Maxwell, M. Vandenbroucke, and B. Durand. 1980. Molecular parameters of maturation in the Toarrian Shales, Paris Basin, France. I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta 44: 1709.ADSCrossRefGoogle Scholar
  37. Moldowan, J. M., and W. K. Seifert. 1979. Head-to-head linked isoprenoid hydrocarbons in petroleum. Science 204: 169.ADSCrossRefGoogle Scholar
  38. Ourisson, G., P. Albrecht, and M. Rohmer. 1979. The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709.CrossRefGoogle Scholar
  39. Rullkotter, J., and R. P. Philp. 1981. Extended hopanes up to C40 in Thornoton bitumen. Nature, 292: 616.ADSCrossRefGoogle Scholar
  40. Russell, N. J., and J. K. Volkman. 1980. The effect of growth temperature on wax ester composition in the psychrophilic bacterium Micrococcus cryophilus ATCC15174. J. Gen. Microbiol. 118: 131.Google Scholar
  41. Simoneit, B. R. T. 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim. Cosmochim. Acta 41: 463.ADSCrossRefGoogle Scholar
  42. Tibbetts, P. J. C. 1980. The analysis of carotenoids and their use as environmental and palaeoenvironmental indicators. Ph.D. thesis, University of Bristol.Google Scholar
  43. Van Dorsselaer, A., A. Ensminger, C. Spyckerelle, M. Dastillung, O. Sieskind, P. Arpino, P. Albrecht, G. Ourisson, P. W. Brooks, S.J. Gaskell, B. J. Kimble, R. P. Philp, J. R. Maxwell, and G. Eglinton. 1974. Degraded and extended hopane derivatives (C27 to c 35 ) as ubiquitous geochemical markers. Tetrahedron Letts. 1349.Google Scholar
  44. Volkman, J. K., G. Eglinton, E. D. S. Corner, and J. R. Sargent. 1980a. Novel unsaturated straight chain c 37 -c 39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi, p. 219. In A. G. Douglas and J. R. Maxwell [eds.]. Advances in Organic Geochemistry 1979. Pergamon Press, Oxford.Google Scholar
  45. Volkman, J. K., E. D. S. Corner, and G. Eglinton. 1980b. Transformations of biolipids in the marine food web and in underlying bottom sediments, p. 185. In; R. Daumas [ed.], Biogeochemie de la Matiere Organique a 1’Interface Eau-Sédiment Marin. CNRS, Paris.Google Scholar
  46. Wakeham, S. G., J. W. Farrington, R. B. Gagosian, C. Lee, H. DeBaar, G. E. Nigrelli, B. W. Tripp, S. O. Smith, and N. H. Frew. 1980. Organic matter fluxes from sediment traps in the equatorial Atlantic Ocean. Nature 286: 798.ADSCrossRefGoogle Scholar
  47. Wardroper, A. M. K. 1979. Aspects of the geochemistry of polycyclicisoprenoids. Ph.D. thesis, University of Bristol.Google Scholar
  48. Youngblood, W. W., M. Blumer, R. R. L. Guillard, and F. Fiore. 1971. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. 8: 190.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • S. C. Brassell
    • 1
  • G. Eglinton
    • 1
  1. 1.Organic Geochemistry Unit, School of ChemistryUniversity of BristolBristolEngland

Personalised recommendations