Advertisement

Strategies for Growth and Evolution of Micro-Organisms in Oligotrophic Habitats

  • H. van Gemerden
  • J. G. Kuenen
Part of the NATO Conference Series book series (NATOCS, volume 15)

Abstract

The strategy of microbes to adapt to a particular environment occurs both at the phenotypical and at the genotypical level. In general phenotypic responses may be needed to cope with temporary changes, whereas genetic adaptations may be needed for long lasting changes in the environment.

Keywords

Specific Growth Rate Dilution Rate Continuous Culture Maximum Specific Growth Rate Balance Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeftink, H. H., and H. van Gemerden. 1979. Actual and potential rates of substrate oxidation and product formation in continuous cultures of Chromatium vinosum. Arch. Microbiol. 121: 161–167.CrossRefGoogle Scholar
  2. Biebl, H., and N. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.CrossRefGoogle Scholar
  3. Boylen, C. W., and J. C. Ensign. 1970a. Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoites. J. Bacteriol. 103: 569–577.Google Scholar
  4. Boylen, C. W., and J. C. Ensign. 1970b. Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoites. J. Bacteriol. 103: 578–587.Google Scholar
  5. Brown, E. J., and L. A. Molot. 1980. Competition for phosphorus among phytoplankton. Abstract Int. Symp. Microb. Ecol. 2: 163.Google Scholar
  6. Dawes, E. A. 1976. Endogenous metabolism and the survival of starved prokaryotes. Symp. Soc. Gen. Microbiol. 26: 19–53.Google Scholar
  7. Dow, C. S., and R. Whittenbury. 1980. Prokaryotic form and function. Proc. Int. Symp. Microb. Ecol. 2: 391–417.Google Scholar
  8. Ely, B., A. B. C. Amarasinghe, and R. A. Bender. 1978. Ammonia assimilation and glutamate formation in Caulobacter crescentus. J. Bacteriol. 133: 225–230.Google Scholar
  9. Gons, H. J., and L. C. Mur. 1975. An energy balance for algal populations in light-limiting conditions. Verh. Int. Verein Limnol- 19: 2729–2733.Google Scholar
  10. Gottschal, J. C., and J. G. Kuenen. 1980 Selective enrichment of facultatively chemolithotrophic Thiobacilli and related organisms in continuous culture. FEMS Microbiol. Lett. 7: 241–247.CrossRefGoogle Scholar
  11. Gottschal, J. C., H. Nanninga, and J. G. Kuenen. 1981. Growth of Thiobacillus A2 under alternating growth conditions in the chemostat. J. Gen. Microbiol. 126: 85–96.Google Scholar
  12. Gottschal, J. C., A. Pol, and J. G. Kuenen. 1981. Metabolic flexability of Thiobacillus A2 during substrate transitions in the chemostat. Arch. Microbiol. 129: 23–28.CrossRefGoogle Scholar
  13. Gottschal, J. C., S. de Vries, and J. G. Kuenen. 1979. Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. Arch. Microbiol. 121: 241–249.CrossRefGoogle Scholar
  14. Harder, W. 1969. Obligaat psychrofiele mariene bacteriën. Ph.D. thesis, Univ. Groningen, The Netherlands.Google Scholar
  15. Harder, W., and H. Veldkamp. 1968. Physiology of an obligately psychrophilic marine Pseudomonas species. J. Appl. Bacteriol. 31: 12–23.CrossRefGoogle Scholar
  16. Harder, W., and H. Veldkamp. 1971. Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek J. Microbiol. Serol. 37: 51–63.CrossRefGoogle Scholar
  17. Healey, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281–286.CrossRefGoogle Scholar
  18. Hirsch, P. 1979. Life under conditions of low nutrient concentrations, pp. 357–373. M. Shilo [ed.], Strategies of Microbial Life in Extreme Environments. Berlin Dahlem Konferenz.Google Scholar
  19. Jannasch, H. W. 1967. Enrichments of aquatic bacteria in continuous culture. Arch. Mikrobiol. 59: 165–173.CrossRefGoogle Scholar
  20. Kämpf, C., and N. Pfennig. 1980. Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violaceae and Chromatlum vinosum. Arch. Microbiol. 127: 125–135.CrossRefGoogle Scholar
  21. Konings, W. N., and H. Veldkamp. 1980. Phenotypic responses to environmental change. Proc. Int. S3mip. Microb. Ecol. 2: 161–191.Google Scholar
  22. Kuenen, J. G. 1980. “Recycling” door micro-organismen, pp. 51–85. In; H. Veldkamp [ed.], Oecologie van Micro-organismen. Pudoc, Wageningen.Google Scholar
  23. Kuenen, J. G., J. Boonstra, H. G. J. Schroder, and H. Veldkamp. 1977. Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria. Microb. Ecol. 3: 119–130.CrossRefGoogle Scholar
  24. Kuenen, J. G., and H. Veldkamp. 1972. Thlomicrospira pelophila, nov. gen. nov. sp. a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Van Leeuwenhoek J. Microbiol. Serol. 38: 241–256.CrossRefGoogle Scholar
  25. Kuenen, J. G., and H. Veldkamp. 1973. Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. Arch. Mikrobiol. 94: 173–190.CrossRefGoogle Scholar
  26. Laanbroek, H. J., A. J. Smit, G. Klein Nulend, and H. Veldkamp. 1979. Competition for L-glutamate between specialised and versatile Clostridium species. Arch. Microbiol. 120: 61–66.CrossRefGoogle Scholar
  27. Matin, A. 1979. Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, pp. 323–339. In: M. Shilo [ed.], Strategies of Microbial Life in Extreme Environments. Berlin Dahlem KonferenzGoogle Scholar
  28. Matin, A., and H. Veldkamp. 1978. Physiological basis of the selective advantage of a Spirrillum sp. in carbon-limited environment. J. Gen. Microbiol. 105: 187–197.Google Scholar
  29. Monod, J. 1942. Recherches sur la crolssance des cultures bacteriennes. Ph.D. thesis, Paris.Google Scholar
  30. Neijssel, O. M, S. Hueting, K. J. Crabbendam, and D. W. Tempest. 1975. Dual pathway of glycerol assimilation in Klebsiella aerogenes. Arch. Microbiol. 104: 83–87.CrossRefGoogle Scholar
  31. Pirt, S. J. 1975. Principles of Microbe and Cell Cultivation. Blackwell Sci. Publ., Oxford, England.Google Scholar
  32. Poindexter, J. V. 1981. The Caulobacters: ubiquitous unusual bacteria. Microbiol. Rev. 45: 123–179.Google Scholar
  33. Powell, E. O. 1967. The growth rate of microorganisms as a function of substrate concentration, pp. 34–55. In: E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest [eds.]. Microbial Physiology and Continuous Culture. Proc. Third Int. Symp., HMSO Porton Down.Google Scholar
  34. Raven, J. A., and J. Beardall. 1981. The intrinsic permeability of biological membranes to H+: the efficiency of low rates of energy transformation. FEMS Microbiol. Lett. 10: 1–5.CrossRefGoogle Scholar
  35. Sinclair, C. G., and H. H. Topiwala. 1970. Model for continuous culture which considers the viability concept. Biotechnol. Bioeng. 12: 1069–1079.CrossRefGoogle Scholar
  36. Smith, A. L., and D. P. Kelly. 1979. Competition in the chemostat between an obligately and a facultatively chemolithotrophic Thiobacillus. J. Gen. Microbiol. 115: 377–384.Google Scholar
  37. Tempest, D. W. 1970. The continuous cultivation of micro-organisms. I. Theory of the chemostat, pp. 259–277. In: J. R. Norris and W. Ribbons [eds.]. Methods in Microbiology. Academic Press, New York.Google Scholar
  38. Tempest D. W., D. Herbert and P. J. Phipps. 1967. Studies on the growth of Aerobacter aerogenes at low dilution rates in a chemostat, pp. 240–253. E. O. Powell, C. G. T. Evans, R. Strange, and D. W. Tempest [eds.]. Microbial Physiology and Continuous Culture. Proc. Third Int. Symp., HMSO Porton Down.Google Scholar
  39. Tempest, D. W., J. L. Meers, and C. M. Brown. 1970. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem. J. 117: 405–407.Google Scholar
  40. van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb. Ecol. 1: 104–119.CrossRefGoogle Scholar
  41. van Gemerden, H. 1980. Survival of Chromatium vinosum at low light intensities. Arch. Microbiol. 125: 115–121.CrossRefGoogle Scholar
  42. Van Liere, E. 1979. On Oscillatoria agardhii Gomont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. Ph.D. thesis, Univ. Amsterdam.Google Scholar
  43. Veldkamp, H. 1976. Continuous Culture in Microbial Physiology and Ecology. Meadowfield Press, Shildon Co., Durham.Google Scholar
  44. Whitting, P. H., M. Midgley, and E. A. Dawes. 1976. The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate and of glucose metabolism in Pseudomonas aeruginosa. J. Gen. Microbiol. 92: 304–310.Google Scholar
  45. Wijbenga, D. J., and H. van Gemerden. 1981. The influence of acetate on the oxidation of sulfide by Rhodopseudomonas capsulata. Arch. Microbiol. 129: 115–118.CrossRefGoogle Scholar
  46. Zevenboom, W. 1980. Growth and nutrient uptake kinetics of Oscillatoria agardhii. Ph.D. thesis, Univ. Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. van Gemerden
    • 1
  • J. G. Kuenen
    • 2
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands
  2. 2.Department of MicrobiologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations