Effect of Grazing: Metazoan Suspension Feeders

  • C. Barker Jørgensen
Part of the NATO Conference Series book series (NATOCS, volume 15)


Suspension feeding is primarily an adaptation to utilize the primary production in aquatic habitats, which is predominantly in the form of phytoplankton, particularly in the sea. The microscopic phytoplankton algae are present in dilute suspensions in the water masses. Utilization of the phytoplankton therefore involves processing large volumes of the surrounding water which, besides the algal cells, also contains other types of suspended matter, including bacteria and other heterotrophs, as well as dissolved organic molecules. Metazoan suspension feeders may therefore exert an effect by directly grazing upon the bacterioplankton or by acting as competitors for the dissolved organic molecules that constitute bacterial food.


Mytilus Edulis Surrounding Water Suspension Feeder Retention Efficiency Suspension Feeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A. L. 1981. The impact of appendicularian grazing on natural food concentrations in situ. Limnol. Oceanogr. 26: 247–257.CrossRefGoogle Scholar
  2. Chipman, W. A., and J. G. Hopkins. 1954. Water filtration by the bay scallop, Pecten irradians, as observed with the use of radioactive plankton. Biol. Bull. 107: 80–91.CrossRefGoogle Scholar
  3. Dare, P. J. 1976. Settlement, growth and production of the mussel, Mytilus edulis L., in Morecambe Bay, England. Fish. Invest. Ser. II 28: 1–25.Google Scholar
  4. Deibel, D. R. 1979. Laboratory and field studies on the feeding, growth and swarm dynamics of neritic tunicates from the Georgia Bight. Ph.D. dissertation, Univ. of Georgia, Athens, Georgia.Google Scholar
  5. Fenchel, T. 1980. Relation between particle size selection and clearance in suspension feeding ciliates. Limnol. Oceanogr. 25: 733–738.CrossRefGoogle Scholar
  6. Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.CrossRefGoogle Scholar
  7. Fjerdingstad, E. J. 1961. The ultrastructure of choanocyte collars in Spongilla lacustris (L.). Z. Zellforsch. 53: 645–657.CrossRefGoogle Scholar
  8. Flood, P. R. 1978. Filter characteristics of appendicularian food catching nets. Experientia 34: 173–175.CrossRefGoogle Scholar
  9. Flood, P. R., and A. Fiala-Medioni. 1979. Filter characteristics of ascidian food trapping mucous films. Acta Zool. (Stockh.) 60: 271–272.Google Scholar
  10. Fraser, J. H. 1962. The role of ctenophores and salps in zooplankton production and standing crop. Rapp. Cons. Int. Explor. Mer. 153: 121–123.Google Scholar
  11. Gilmour, T. H. J. 1978. Ciliation and function of the food-collecting and waste-rejecting organs of lophophorates. Can. J. Zool. 56: 2142–2155.CrossRefGoogle Scholar
  12. Harbison, G. R., and R. W. Gilmer. 1976. The feeding rates of the pelagic tunicate Pegea confederata and two other salps. Limnol. Oceanogr. 21: 517–528.CrossRefGoogle Scholar
  13. Harbison, G. R., and V. L. McAlister, 1979. The filter-feeding rates and particle retention efficiencies of three species of Cyclosalpa (Tunicata, Thaliacea), Limnol. Oceanogr. 24: 875–892.CrossRefGoogle Scholar
  14. Heron, A. C. 1972. Population ecology of a colonizing species: the pelagic tunicate Thalia democratica. I and II. Oecologia 10: 269–312.Google Scholar
  15. Jordan, T. E., and I. Valiela. 1982. A nitrogen budget of the ribbed mussel, Geukensia demissa, and its significance in nitrogen flow in a New England salt marsh. Limnol. Oceanogr. 27: 75–90.CrossRefGoogle Scholar
  16. Jørgensen, B. B. 1980. Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 34: 68–76.CrossRefGoogle Scholar
  17. Jørgensen, C. B. 1981a. A hydromechanical principle for particle retention in Mytilus edulis and other ciliary suspension feeders. Mar. Biol. 61: 277–282.CrossRefGoogle Scholar
  18. Jørgensen, C. B. 1981b. Feeding and cleaning mechanisms in a suspension feeding bivalve, Mytilus edulis. Mar. Biol. 65: 159–163.CrossRefGoogle Scholar
  19. JøJrgensen, C. B. 1981c. Mortality, growth, and grazing impact of a cohort of bivalve larvae, Mytilus edulis L. Ophelia 20: 185–192.Google Scholar
  20. Jørgensen, C. B. 1982. Fluid mechanics of the mussel gill: The lateral cilia. Mar. Biol. 70: 275–281.CrossRefGoogle Scholar
  21. Jørgensen, C. B. 1983. Patterns of uptake of dissolved amino acids in mussels (Mytilus edulis). Mar. Biol. 73: 177–182.CrossRefGoogle Scholar
  22. Jørgensen, C. B., and E. D. Goldberg. 1953. Particle filtration in some ascidians and lamellibranchs. Biol. Bull. 105: 477–489.CrossRefGoogle Scholar
  23. King, K. R., J. T. Hollibaugh, and F. Azam. 1980. Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns. Mar. Biol. 56: 49–57.CrossRefGoogle Scholar
  24. Keunzler, E. J. 1961. Phosphorus budget of a mussel population. Limnol. Oceanogr. 6: 400–415.CrossRefGoogle Scholar
  25. Madin, L. P. 1974. Field observations on the feeding behavior of salps (Tunicata: Thaliacea). Mar. Biol. 25: 143–147.CrossRefGoogle Scholar
  26. McCammon, H. M. 1965. Filtering currents in brachiopods measured with a thermistor flowmeter. Ocean Sei. Ocean Engin. 2: 772–779.Google Scholar
  27. Møhlenberg, F., and H. Ü. Riisgärd 1978. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17: 239–246.CrossRefGoogle Scholar
  28. Møhlenberg, F., and H. U. Riisgärd 1979. Filtration rate, using a new indirect technique, in thirteen species of suspension-feed- ing bivalves. Mar. Biol. 54: 143–148.CrossRefGoogle Scholar
  29. Moore, H. H. 1971. The structure of the latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Mar. Biol. 11: 23–27.CrossRefGoogle Scholar
  30. Owen, G. 1974. Studies on the gill of Mytilus edulis: the eulaterofrontal clrrl. Proc. R. Soc. Lond. Ser. B. 187: 83–91.ADSCrossRefGoogle Scholar
  31. Owen, G., and J. M. McCrae. 1976. Further studies on the laterofrontal tracts of bivalves. Proc. R. Soc. Lond. Ser. B. 197: 527–544.ADSCrossRefGoogle Scholar
  32. Paffenhöfer, G.-A. 1976. On the biology of appendicularia of the southeastern North Sea, pp 437–455. In: G. Persoone and E. Jaspers [eds.], 10th European Symposium on Marine Biology. Vol. 2. Universa Press, Belgium.Google Scholar
  33. Randløv, A., and H. U. Rusgärd. 1979. Efficiency of particle retention and filtration rate in four species of ascidians. Mar. Ecol. Prog. Ser. 1: 55–59.CrossRefGoogle Scholar
  34. Reiswig, H. M. 1971. In situ pumping activities of tropical demospongiae. Mar. Biol 9: 38–50.CrossRefGoogle Scholar
  35. Reiswig, H. M. 1973. The aquiferous systems of three Jamaican demospongiae. Bull. Mar. Sei. 23: 191–226.Google Scholar
  36. Reiswig, H. M. 1974. Water transport, respiration and energetic of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 14: 231–249.CrossRefGoogle Scholar
  37. Reiswig, H. M. 1975. The aquiferous systems of three marine demospongiae. J. Morphol. 145: 493–502.CrossRefGoogle Scholar
  38. Riisgärd, H. Ü., and F. Muihlenberg. 1979. An improved automatic recording apparatus for determining the filtration rate of Mytilus edulis as a function of size and algal concentration. Mar. Biol. 52: 61–67.CrossRefGoogle Scholar
  39. Riisgärd, H. U., A. Randljiv and P. S. Kristensen. 1980. Rates of water processing, oxygen consumption and efficiency of particle retention in veligers and young post-metamorphic Mytilus edulis. Ophelia 19: 37–47.CrossRefGoogle Scholar
  40. Stephens, G. C. 1982. The role of uptake of organic solutes in nutrition of marine organisms. Am. Zool. 22: 611–733.Google Scholar
  41. Strathmann, R. R., T. L. Jahn, and J. R. C. Fonseca. 1972. Suspension feeding by marine invertebrate larvae: Clearance of particles by ciliated bands of a rotifer, pluteus, and trocho- phore. Biol. Bull. 142: 505–519.CrossRefGoogle Scholar
  42. Wiebe, P. H., L. P. Madin, L. R. Haury, G. R. Harbison, and L. M. Philbin. 1979. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53: 249–255.CrossRefGoogle Scholar
  43. Wright, R. T., R. B. Coffin, C. P. Ersing, and D. Pearson. 1982. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnol. Oceanogr. 27: 91–98.CrossRefGoogle Scholar
  44. Wright, S. H., and G. C. Stephens. 1978. Removal of amino acid during a single passage of water across the gill of marine mussels. J. Exp. Zool. 205: 337–352.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. Barker Jørgensen
    • 1
  1. 1.Zoophysiological Laboratory AUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations