Advertisement

Protozoan Bacterivory in Pelagic Marine Waters

  • John McN. Sieburth
Part of the NATO Conference Series book series (NATOCS, volume 15)

Abstract

The significance of bacteria and bacterial-grazing protozoa in the decomposition of detritus and mineral cycling in the benthic environment has been excellently reviewed by Fenchel and Harrison (1976) and Fenchel and Jørgensen (1977) and demonstrated in a series of experiments by Fenchel (1977). In reviewing the role of protozoa in nutrient cycling and energy flow, Stout (1980) correctly states that there is little information on the nutrients and the nutrient cycling of planktonic protozoa in pelagic waters. Although the role in the pelagic food chain of the protozooplankton and their grazing of bacteria was recognized by Lohmann (1911), only recently is it receiving renewed attention (Pomeroy 1974; Sieburth 1976; 1979; Sieburth et al. 1978; Williams 1981). Such studies require a sound taxonomie basis. Contemporary studies still rely heavily upon late 19th century (e.g., Kent 1880-81; Stokes 1888) and early 20th century (e.g.. Calkins 1901; Griessman 1914) monographs, although this area of enquiry has recently been reopened (Fenchel 1982a; Davis and Sieburth, unpublished). Before discussing the recent developments, it is first necessary to draw upon the older literature and build a foundation of what is known about the grazing of bacteria by rhizopods, flagellates and ciliates in general, before looking at the nature of in situ pelagic populations of bacterial prey and their protozoan predators.

Keywords

Planktonic Bacterium Heterotrophic Flagellate Marine Snow Paramecium Caudatum Organotrophic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S. 1973. Particle aggregation and phagotrophy by Ochromonas. Arch. Mikrobiol. 92: 39–44.CrossRefGoogle Scholar
  2. Alldredge, A. L. 1979. The chemical composition of macroscopic aggregates in two neritic seas. Limnol. Oceanogr. 24: 855–866CrossRefGoogle Scholar
  3. Allen, H. L. 1977. Experimental studies of dissolved organic matter in a soft-water lake, pp. 477–527. In: J. Cairns [ed.]. Aquatic Microbial Conmunities. Garland Publ. Co., New York.Google Scholar
  4. Anderson, O. R., and A. W. H. Bé. 1976. A cytochemical structure study of phagotrophy in a planktonic foraminifer Hastigerina pelagica (d’Orbigny). Biol. Bull. 151: 437–449.CrossRefGoogle Scholar
  5. Anderson, O. R., M. Spindler, A. W. H. Bé, and C. Hemleben. 1979. Trophic activity of planktonic foraminifera. J. Mar. Biol. Assoc. UK 59: 791–799.CrossRefGoogle Scholar
  6. Andrews, P., and P. J. leB. Williams. 1971. Heterotrophic utiliza’tion of dissolved organic compounds in the óea. III. Measure’ment of the oxidation rates and concentrations of glucose and amino acids in sea water. J. Mar. Biol. Assoc. UK 51: 111–125.CrossRefGoogle Scholar
  7. Azam, F., and R. E. Hodson. 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.CrossRefGoogle Scholar
  8. Barker, A. N. 1946. The ecology and function of protozoa in sewage purification. Ann. Appl. Biol. 33: 314–325.CrossRefGoogle Scholar
  9. Barna, I., and D. S. Weis. 1973. The utilization of bacteria as food for Paramecium bursaria. Trans. Am. Microsc. Soc. 92: 434–440.CrossRefGoogle Scholar
  10. Barsdate, R. J., R. T. Prentki, and T. Fenchel. 1974. Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect on bacterial grazers. Oikos 25: 239–251.CrossRefGoogle Scholar
  11. Baxter, M. 1982. The response of marine bacteria to carbohydrate. M.S. thesis. University of Rhode Island. 88 pp.Google Scholar
  12. Beers, J. R., F. M. H. Reid, and G. L. Stewart. 1975. Microplankton of the North Pacific Central Gyre. Population structure and abundance, June 1973. Int. Rev. ges. Hydrobiol. 60: 607–638.Google Scholar
  13. Bell, C. R., and L. J. Albright. 1981. Attached and free-floating bacteria in the Fraser River Estuary, British Columbia, Canada. Mar. Ecol. Prog. Ser. 6: 317–327.CrossRefGoogle Scholar
  14. Berk, S. G., R. R. Colwell, and E. B. Small. 1976. A study of feeding responses to bacterial prey by estuarine ciliates. Trans. Am. Microsc. Soc. 95: 514–520.CrossRefGoogle Scholar
  15. Bick, H. 1968. Autokologische und saprobiologische Untersuchungenam Susswasserciliaten. Hydrobiologia 31: 17–36.CrossRefGoogle Scholar
  16. Booth, B. C., J. Lewin, and R. E. Norris. 1982. Nanoplankton species predominant in the subarctic Pacific in May and June Deep-Sea Res. 29: 185–200.CrossRefGoogle Scholar
  17. Brand, L. E., R. R. L. Guillard, and L. S. Murphy. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res. 2: 193–201.CrossRefGoogle Scholar
  18. Burbanck, W. D. 1942. Physiology of the ciliate Colpidium colpoda. I. The effect of various bacteria as food on the division rate of Colpidium colpoda. Physiol. Zool. 15: 342–362.Google Scholar
  19. Burney, C. M., K. M. Johnson, D. M. Lavoie, and J. McN. Sieburth. Dissolved carbohydrate and microbial ATP in the North Atlantic: concentrations and interactions. Deep-Sea Res. 26: 1267–1290.Google Scholar
  20. Burney, C. M., P. G. Davis, K. M. Johnson, and J. McN. Sieburth. 1981. Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton in the western Sargasso Sea. Mar. Biol. 65: 289–296.CrossRefGoogle Scholar
  21. Burney, C. M., P. G. Davis, K. M. Johnson, and J. McN. Sieburth. 1982. Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar. Biol. 67: 311–322.CrossRefGoogle Scholar
  22. Calkins, G. N. 1901. Marine protozoa from Woods Hole. Bull. US Fish. Comm. 21: 413–468.Google Scholar
  23. Calow, P. 1977. Conversion efficiencies in heterotrophic organisms, Biol. Rev. 52: 385–409.CrossRefGoogle Scholar
  24. Caron, D. A., P. G. Davis, L. P. Madin, and J. McN. Sieburth. 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797.ADSCrossRefGoogle Scholar
  25. Coler, R. A., and H. B. Gunner. 1969. Microbial populations as determinants in protozoan succession. Water Res. 3: 149–156.CrossRefGoogle Scholar
  26. Curds, C. R. 1963. The flocculation of suspended matter by Paramecium caudatum. J. Gen Microbiol. 33: 357–363.Google Scholar
  27. Curds, C. R., and J. M. Van Dyke. 1966. The feeeding habits and growth rates of some freshwater ciliates found in activated sludge plants. J. Appl. Ecol. 3: 127–137.CrossRefGoogle Scholar
  28. Cutler, D. W. 1920. A method for estimating the number of active protozoa in soil. J. Agric. Sei. 10: 135–143.CrossRefGoogle Scholar
  29. Cutler, D. W., and L. M. Crump. 1920. Daily periodicty in the numbers of active soil flagellates: with a brief note on the relation of trophic amoebae and bacterial numbers. Ann. Appl. Biol. 7: 11–24.CrossRefGoogle Scholar
  30. Danso, S. K., and M. Alexander. 1975. Regulation of predation by prey density: the protozoan-Rhizobium relationship. Appl. Microbiol. 29: 515–521.Google Scholar
  31. Davis, P. G. 1982. Bacterivorous flagellates in marine waters. Ph.D. dissertation. University of Rhode Island, Kingston.Google Scholar
  32. Davis, P. G., D. A. Caronarid J. McN. Sieburth. 1978. Oceanic amoebae from the North Atlantic: culture, distribution, and taxonomy. Trans. Am. Microsc. Soc. 97: 73–88.CrossRefGoogle Scholar
  33. Davis, P. G., and J. McN. Sieburth. 1982. Differentiation of the phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy. Ann. Inst. Oceanogr. 58(S): 249–260.Google Scholar
  34. Dive, D., C. Dupont, and H. Leclerc. 1974. Nutrition holozoique de Colpodium campylum aux depens de bacteriés pigmentées ou synthétisant des toxines. Protistologica 10: 517–525.Google Scholar
  35. Droop, M. R. 1970. Nutritional investigation of phagotrophic protozoa under axenic conditions. Helgol. Wiss. Meeresunters 20: 272–277.CrossRefGoogle Scholar
  36. Droop, M. R. 1973. Nutrient limitation in osmotrophic protista. Am. Zool. 13: 209–214.Google Scholar
  37. Fenchel, T. 1968. The ecology of marine microbenthos. III. The reproductive potential of ciliates. Ophelia 5: 123–136.CrossRefGoogle Scholar
  38. Fenchel, T. 1977. The significance of bactivorous protozoa in the microbial community of detrital particles, pp. 529–544. In: J. Cairns [ed.]. Aquatic Microbial Communities. Garland Publ., New York.Google Scholar
  39. Fenchel, T. 1980a. Suspension feeding in ciliated protozoa: functional response and particle size selection. Microb. Ecol. 6: 1–11.CrossRefGoogle Scholar
  40. Fenchel, T. 1980b. Suspension feeding in ciliated protozoa: feeding rates and the ecological significance. Microb. Ecol. 6: 13–25.CrossRefGoogle Scholar
  41. Fenchel, T. 1980c. Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol. Oceanogr. 25: 733–738.CrossRefGoogle Scholar
  42. Fenchel, T. 1980d. Suspension feeding in ciliated protozoa: structure and function of feeding organelles. Arch. Protistenk. 123: 239–260.CrossRefGoogle Scholar
  43. Fenchel, T. 1982a. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser. 8: 211–223.Google Scholar
  44. Fenchel, T. 1982b. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231.CrossRefGoogle Scholar
  45. Fenchel, T. 1982c. Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments. Mar. Ecol. Prog. Ser. 9: 25–33.CrossRefGoogle Scholar
  46. Fenchel, T. 1982d. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.CrossRefGoogle Scholar
  47. Fenchel, T., and P. Harrison. 1976. The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, pp. 285–299. In: J. M. Anderson and A. MacFadyen [eds.], The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publ., Oxford.Google Scholar
  48. Fenchel, T., and B. B. Jørgensen. 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv. Microb. Ecol. 1: 1–58.Google Scholar
  49. Fenchel, T., and E. B. Small, 1980. Structure and function of the oral cavity and its organelles in the hymenostome ciliate Glaucoma. Trans. Am. Microsc. Soc. 99: 52–60.CrossRefGoogle Scholar
  50. Ferguson, R. L., and P. Rublee. 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–145.CrossRefGoogle Scholar
  51. Ferguson, R. L., and A. V. Palumbo. 1979. Distribution of suspended bacteria in neritic waters south of Long Island during strati’fied conditions. Limnol. Oceanogr. 24: 697–705.CrossRefGoogle Scholar
  52. Geesey, G. G. 1982. Microbial exopolymers: ecological and economic considerations. Am. Soc. Microbiol. News 48: 9–14.Google Scholar
  53. Griesmann, K. 1914. Uber marine flagellaten. Arch. Protistenk. 32: 1–78.Google Scholar
  54. Haas, L. W. 1982. Improved epifluorescence microscopy for observing planktonic microorganisms. Ann. Inst. Oceanogr. 58(S): 261–266.Google Scholar
  55. Haas, L. W., and K. L. Webb. 1979. Nutritional mode of several non-pigmented microflagellates from the York River estuary. Virginia. J. Exp. Mar. Biol. Ecol. 39: 125–134.CrossRefGoogle Scholar
  56. Habte, M., and M. Alexander. 1978. Mechanisms of persistence of low numbers of bacteria preyed upon by protozoa. Soil Biol. Biochem. 10: 1–6.CrossRefGoogle Scholar
  57. Hamilton, R. D., and J. E. Preslan. 1969. Cultural characteristics of a pelagic marine hjrmenostome ciliate, Uronema sp. J. Exp. Mar. Biol. Ecol. 4: 90–99.CrossRefGoogle Scholar
  58. Hamilton, R. D., and J. E. Preslan. 1970. Observations on hetero’trophic activity in the eastern tropical Pacific. Limnol. Oceanogr. 15: 395–401.CrossRefGoogle Scholar
  59. Hanna, B. A., and D. M. Lilly. 1974. Growth of Uronema marinum in chemically defined medium. Mar. Biol. 26: 153–160.CrossRefGoogle Scholar
  60. Hardin, G. 1942. An investigation of the physiological requirements of a pure culture of the heterotrophic flagellate Oikomonas termo, Kent. Physiol. Zool. 15: 466–475.Google Scholar
  61. Hardin, G. 1943. Flocculation of bacteria by protozoa. Nature 151: 642.ADSCrossRefGoogle Scholar
  62. Hardin, G. 1944. Physiological observations and their ecological significance: A study of the protozoan Oikomonas termo Kent. Ecology 25: 192–201.CrossRefGoogle Scholar
  63. Harding, J. P. 1937a. Quantitative studies on the ciliate Glaucoma. The regulation of the size and the fission rate by the bacterial food supply. J. Exp. Biol. 14: 422–430.Google Scholar
  64. Harding, J. P. 1937b. Quantitative studies on the ciliate Glaucoma. The effects of starvation. J. Exp. Biol. 14: 431–439.Google Scholar
  65. Hentschel, E. 1936. Allgemeine Biologie des Sudatlantisschen Ozeans. Deutsche Atlantische Expedition METEOR, Band XI. Walther de Gruyter, Berlin. 344 pp.Google Scholar
  66. Hinga, K. R., P. G. Davis, and J. McN. Sieburth. 1979. Enclosed chambers for the convenient reverse flow concentration and selective filtration of particles. Limnol. Oceanogr. 24: 536–540.CrossRefGoogle Scholar
  67. Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.Google Scholar
  68. Hobbie, J. E., and P. Rublee. 1977. Radioisotope studies of hetero’trophic bacteria in aquatic ecocystems, pp. 441–476. In: J. Cairns [ed.]. Aquatic Microbial Communities. Garland Publ. Co., New York.Google Scholar
  69. Hoppe, H.-G. 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of microautoradiography. Mar. Biol. 36: 291–302.CrossRefGoogle Scholar
  70. Johannes, R. E. 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10: 434–442.CrossRefGoogle Scholar
  71. Johnson, P. W., and J. McN. Sieburth. 1979. Chroococcoid cyano- bacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935.CrossRefGoogle Scholar
  72. Johnson, P. W., and J. McN. Sieburth. 1982. In situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327.CrossRefGoogle Scholar
  73. Johnson, P. W., H.-S. Xu, and J. McN. Sieburth. 1982. The utiliza’tion of chroococcoid cyanobacteria by marine protozooplankters but not by calanoid copepods. Ann, Inst. Oceanogr. 58(S): 297–308.Google Scholar
  74. Kent, W. W. 1880–1881. A Manual of the Infusoria. Vol. I, III. David Bogue, London.Google Scholar
  75. Kidder, G. W., and C. A. Stuart. 1939. Growth studies in ciliates. I. The role of bacteria in the growth and reproduction of Colpoda. Physiol. Zool. 12: 329–340.Google Scholar
  76. Kirchman, D., and R. Mitchell. 1982. Contribution of particle- bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Environ. Microbiol. 43: 200–209.Google Scholar
  77. Knauer, G. A., and J. H. Martin. 1981. Primary production and carbon-nitrogen fluxes in the upper 1,500 m of the northeast Pacific. Limnol. Oceanogr. 26: 181–186.CrossRefGoogle Scholar
  78. Kopylov, A. I., and E. S. Moiseev. 1980. Effect of colorless flagellates on the determination of bacterial production in seawater. Dokl. Akad. Nauk SSSR Biol. Sei. 252: 272–274.Google Scholar
  79. Kume, T. 1979. Feeding patterns of marine ciliates fed on the heterotrophic bacteria. La Mer 17: 109–116.Google Scholar
  80. Leadbeater, B. S. C. 1974. Ultrastructural observations on nanoplankton collected from the coast of Yugoslavia and the Bay of Algiers. J. Mar. Biol. Assoc. UK 54: 179–196.CrossRefGoogle Scholar
  81. Lee, J. J., M. E. McEnery, S. Pierce, H. D. Freudenthal, and W. A. Muller. 1966. Tracer experiments in feeding littoral foraminifera. J. Protozool 13: 659–670.Google Scholar
  82. Leppard, G. G., A. Massalski, and D. R. S. Lean. 1977. Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations. Protoplasma 92: 289–309.CrossRefGoogle Scholar
  83. Lighthart, B. 1969. Planktonic and benthic bacteriovorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean. J. Fish. Res. Board Canada 26: 299–304.CrossRefGoogle Scholar
  84. Lighthart, B., and J. Listen. 1964. Design, operation, and prelim’inary test results of a model sea-bed microbial ecosystem. Bacteriol. Proc. G133, p. 38.Google Scholar
  85. Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–417.CrossRefGoogle Scholar
  86. Linley, E. A. S., and J. G. Field. 1982. The nature and ecological significance of bacterial aggregation in a nearshore upwelling ecosystem. Estuarine Coastal Shelf Sei. 14: 1–11.ADSCrossRefGoogle Scholar
  87. Lohmann, H. 1911. über das Nannoplankton und die Zentrifugierung kleinster Wasserproben zur Gewinnung desselben in lebendem Zustande. Int. Rev. ges. Hydrobiol. Hydrogr. 4: 1–38.CrossRefGoogle Scholar
  88. Maalde, O., and N. O. Kjeldgaard. 1966. Control of Macromolecular Synthesis. W. A. Benjamin, Inc., New York and Amsterdam. 284 pp.Google Scholar
  89. Muller, W. A., and J. J. Lee. 1969. Apparent indispensability of bacteria in foraminiferan nutrition. J. Protozool. 16: 471–478.Google Scholar
  90. Newell, R. C., M. I. Lucas, and E. A. S. Linley. 1981. Rate of degradation and efficiency of conversion of phytoplankton debris by marine microorganisms. Mar. Ecol. Prog. Ser. 6: 123–136.CrossRefGoogle Scholar
  91. Olson, R. J. 1981a. tracer studies of the primary nitrite maximum. J. Mar. Res. 39: 203–226.Google Scholar
  92. Olson, R. J. 1981b. Differential photoinhibition of marine nitri’fying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J. Mar. Res. 39: 227–238.Google Scholar
  93. Pace, M. L., and J. D. Orcutt Jr. 1981. The relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822–830.CrossRefGoogle Scholar
  94. Paerl, H. W. 1978. Microbial organic carbon recovery in aquatic ecosystems. Limnol. Oceanogr. 23: 927–935.CrossRefGoogle Scholar
  95. Payne, W. J., and W. J. Weibe. 1978. Growth yield and efficiency in chemosynthetic microorganisms. Ann. Rev. Microbiol. 32: 155–183.CrossRefGoogle Scholar
  96. Pillai, S. C., and V. Subrahmanyan. 1942. Role of protozoa in the activated sludge process. Nature 150: 525.ADSCrossRefGoogle Scholar
  97. Pomeroy, L. R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.CrossRefGoogle Scholar
  98. Porter, K. G., and Y. S. Feig. 1980. The use of DAPI for identify’ing and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.CrossRefGoogle Scholar
  99. Pütter, A. 1909. Die Ernährung der Wassertiere und der Stoffhaus’hält der Gewässer. Gustav Fischer, Jena. 168 pp.Google Scholar
  100. Reynoldson, T. B. 1942. Vorticella as an indicator organism for activated sludge. Nature 149: 608–609.ADSCrossRefGoogle Scholar
  101. Ryther, H. H. 1969. Photosynthesis and fish production in the sea. Science 166: 72–76.ADSCrossRefGoogle Scholar
  102. Sawyer, T. K. 1971. Isolation and identification of free-living marine amoebae from upper Chesapeake Bay, Maryland. Trans. Am. Microsc. Soc. 90: 43–51.CrossRefGoogle Scholar
  103. Sawyer, T. K. 1975. Marine amoebae from surface waters of Chinco-teague Bay, Virginia: two new genera and nine new species within the families Mayorellidae, Flabellulidae, and Stereomyxidae. Trans. Am. Microsc. Soc. 94: 71–92.CrossRefGoogle Scholar
  104. Sayler, G. S., and C. M. Gilmour. 1978. Heterotrophic utilization of organic carbon in aquatic environments. J. Environ. Qual. 7: 385–391.CrossRefGoogle Scholar
  105. Schleyer, H. H. 1980. A preliminary evaluation of heterotrophic utilisation of a labelled algal extract in a subtidal reef environment. Mar. Ecol. Prog. Ser. 3: 223–229.CrossRefGoogle Scholar
  106. Scranton, M. I., and P. G. Brewer. 1977. Occurrence of methane in the near-surface waters of the western subtropical North- Atlantic. Deep-Sea Res. 24: 127–138.CrossRefGoogle Scholar
  107. Shanks, A. L., and J. D. Trent. 1979. Marine snow: microscale nutrient patches. Limnol. Oceanogr. 24: 850–854.CrossRefGoogle Scholar
  108. Sharp, J. H. 1973. Size classes of organic carbon in seawater. Limnol. Oceanogr. 18: 441–447.CrossRefGoogle Scholar
  109. Sheldon, R. W., and T. R. Parsons. 1967. A continuous size spectrum for particulate matter in the sea. J. Fish. Res. Board Canada 24: 909–915.CrossRefGoogle Scholar
  110. Sieburth, J. McN. 1976. Bacterial substrates and productivity in marine ecosystems. Ann. Rev. Ecol. Syst. 7: 259–285.CrossRefGoogle Scholar
  111. Sieburth, J. McN. 1978. Bacterioplankton: nature, biomass, activity and relationships to the protist plankton. J. Phycol. 14(Suppl.): 31.Google Scholar
  112. Sieburth, J. McN. 1979. Sea Microbes. Oxford University Press, New York. 491 pp.Google Scholar
  113. Sieburth, J. McN. In press. Microbiological and organic-chemical processes in the surface and mixed layers. In; P. S. Liss and W. G. N. Slinn [eds.], Air-Sea Exchange of Gases and Particles. NATO Advanced Study Inst. Ser. D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  114. Sieburth, J. McN., and P. G. Davis. 1982. The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas. Ann. Inst. Oceanogr. 58(S): 285–296.Google Scholar
  115. Sierburth, J. McN., K. M. Johnson, C. M. Burney and D. M. Lavoie. 1977. Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture. Helgol. Wiss. Meeresunters 30: 697–704.CrossRefGoogle Scholar
  116. Sieburth, J. McN., and D. M. Lavoie. 1978. A non-standard approach to heterotrophy: ATP estimation of natural populations of selectively filtered bacterioplankton and their growth rates on in situ water in diffusion-culture, pp. 77–94. In: First American-Soviet Symposium on Biological Effects of Pollution on Marine Organisms, US EPA-600/9–78-007.Google Scholar
  117. Sieburth, J. McN., V. Smetacek and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256–1263.CrossRefGoogle Scholar
  118. Sieburth, J. McN., P.-J. Willis, K. M. Johnson, C. M. Burney, D. M. Lavoie, K. R. Hinga, D. A. Caron, F. W. French, III, P. W. Johnson, and P. G. Davis. 1976. Dissolved organic matter and heterotrophic microneuston in the surface microlayers of the North Atlantic. Science 194: 1415–1418.ADSCrossRefGoogle Scholar
  119. Silver, M. W., and A. L. Alldredge. 1981. Bathypelagic marine snow: deep-sea algal and detrital community. J. Mar. Res. 29: 501–530.Google Scholar
  120. Silver, M. W., and K. W. Bruland. 1981. Differential feeding and fecal pellet composition of salps and pteropods, and the pos’sible origin of the deep-water flora and olive green “cells.” Mar. Biol. 62: 263–273.CrossRefGoogle Scholar
  121. Simon, S. A., T. J. Mcintosh, and R. Latorre. 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216: 63–66.ADSCrossRefGoogle Scholar
  122. Slobodkin, L. B. 1962. Growth and Regulation of Animal Populations. Holt, Rinehart and Winston, New York. 184 pp.Google Scholar
  123. Smith, R. C., and K. S. Baker. 1979. Penetration of UV-B and bio’logically effective dose-rates in natural waters. Photochem. Photobiol. 29: 311–323.CrossRefGoogle Scholar
  124. Sorokin, Y. I. 1970. Aggregation of marine bacterioplankton. Dokl. Akad. Nauk SSSR Biol. Sei. 190: 337–339.Google Scholar
  125. Sorokin, Y. I. 1977. The heterotrophic phase of plankton succes’sion in the Japan Sea. Mar. Biol. 41: 107–117.CrossRefGoogle Scholar
  126. Sorokin, Y. I. 1979. Zooflagellates as a component of the Community of eutrophic and oligotrophic waters in the Pacific Ocean. Oceanology 19: 316–319.Google Scholar
  127. Sorokin, Y. I. 1980. A chamber for the quantitative recording of protozoa and nanoplankton organisms under field conditions. Hydrobiol. J. 16: 74–75.Google Scholar
  128. Stokes, A. C. 1888. A preliminary contribution toward a history of the fresh-water infusoria of the United States. J. Trenton Nat. Hist. Soc. 1(3): 71–345.Google Scholar
  129. Stout, J. D. 1980. The role of protozoa in nutrient cycling and energy flow. Adv. Microb. Ecol. 4: 1–50.Google Scholar
  130. Sugden, B., and L. Lloyd. 1950. The clearing of turbid waters by means of the ciliate Carchesium: a demonstration. J. Proc. Inst. Sew. Purif. 1: 16–26.Google Scholar
  131. Swanberg, N. R. 1979. The ecology of colonial radiolarians: their colony morphology, trophic interactions and associations, behavior, distribution, and the photosynthesis of their symbionts. Ph.D. thesis, WHOI/MIT Joint Program, Woods Hole, Massachusetts.Google Scholar
  132. Taylor, W. D. 1978a. Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb. Ecol. 4: 207–214.CrossRefGoogle Scholar
  133. Taylor, W. D. 1978b. Maximum growth rate, size and commoness in a community of bactivorous ciliates. Oecologia 36: 263–272.CrossRefGoogle Scholar
  134. Taylor, W. D. 1979. Sampling data on the bactivorous ciliates of a small pond compared to neutral models of community structure. Ecology 60: 876–883.CrossRefGoogle Scholar
  135. Taylor, W. D., and J. Berger. 1976. Growth responses of cohabiting ciliate protozoa to various prey bacteria. Can. J. Zool. 54: 1111–1114.CrossRefGoogle Scholar
  136. Taylor, W. D., and J. Berger. 1980. Microspatial heterogeneity in the distribution of ciliates in a small pond. Microb. Ecol. 6: 27–34.CrossRefGoogle Scholar
  137. Throndsen, J. 1969. Flagellates of Norwegian coastal waters. Nytt. Mag. Bot. 16: 161–216.Google Scholar
  138. Throndsen, J. 1970a. Salpingoeca spinifera sp. nov., a new plank- tonic species of the Craspedophyceae recorded in the Arctic. Br. Phycol. J. 5: 87–89.CrossRefGoogle Scholar
  139. Throndsen, J. 1970b. Marine planktonic Acanthoecaceans (Craspedo’phyceae). Nytt. Mag. Bot. 17: 103–111.Google Scholar
  140. Utermöhl, H. 1958. Zur Vervollkommung der Quantitativen Phytoplank- ton-Methodik. Mitt. Int. Ver. Limnol. 9: 1–38.Google Scholar
  141. Wada, E., and A. Hattori. 1971. Nitrite metabolism in the euphotic layer of the central North Pacific Ocean. Limnol. Oceanogr. 16: 766–772.CrossRefGoogle Scholar
  142. Waterbury, J. B., S. W. Watson, R. R. L. Guillard, and L. E. Brand. 1979. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277: 293–294.ADSCrossRefGoogle Scholar
  143. Watson, J. M. 1945. Mechanisms of bacterial flocculation caused by protozoa. Nature 155: 217.Google Scholar
  144. Watson, S. W., T. J. Novitsky, H. L. Quinby, and F. W. Valois. 1977. Determination of bacterial number and biomass in marine environ’ments. Appl. Environ. Microbiol. 33: 940–954.Google Scholar
  145. Wiegert, R. G., and D. F. Owen. 1971. Trophic structure, available resources and population density in terrestrial vs. aquatic ecosystems. J. Theor. Biol. 30: 69–81.CrossRefGoogle Scholar
  146. Williams, P. J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. 1. Size distribution of popula’tion and relationship between respiration and incorporation of growth substrates. J. Mar. Biol. Assoc. UK 50: 859–870.CrossRefGoogle Scholar
  147. Williams, P. J. leB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kiel. Meeresforsch. Sonderheft 5: 1–29.Google Scholar
  148. Williams, P. M., H. Oeschger, and P. Kinney. 1969. Natural radio’carbon activity of the dissolved organic carbon in the north’east Pacific Ocean. Nature 224: 256–258.ADSCrossRefGoogle Scholar
  149. Wood, E. J. F. 1955. Fluorescent microscopy in marine microbiology, J. Cons. Int. Explor. Mer 21: 6–7.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • John McN. Sieburth
    • 1
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations