Heterotrophic Utilization and Regeneration of Nitrogen

  • Gilles Billen
Part of the NATO Conference Series book series (NATOCS, volume 15)


Because organic nitrogen compounds represent both a nitrogen and an energy source for heterotrophic microorganisms in the sea, a discussion of the processes of their utilization and mineralization can bring insights either into specific aspects of the nitrogen cycle or into general mechanisms of organic matter metabolism in the sea. This paper will be mainly devoted to the latter aspect. There are indeed some technical advantages in focusing on nitrogen instead of on carbon for studying organic matter utilization in the sea, owing to the greater sensitivity of analytical methods for organic nitrogen than for organic carbon. However, parallelism or lack of parallelism between nitrogen and carbon utilization processes will be underlined.


Free Amino Acid Dissolve Organic Matter Organic Nitrogen Dissolve Organic Nitrogen Marine Phytoplankton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi, Y., and N. Taga. 1980. Uptake of D-Glucose and L-Proline by oligotrophic and heterotrophic marine bacteria. Can. J. Microbiol. 26: 454–459.Google Scholar
  2. Alexander, M. 1977. Introduction to Soil Microbiology. 2nd edition. Wiley, New York. 467 pp.Google Scholar
  3. Andrews, P., and P. J. leB. Williams. 1971. Heterotrophic utilization of dissolved organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in sea water. J. Mar. Biol. Assoc. UK 51: 111–125.Google Scholar
  4. Armstrong, F. A. J., P. R. Williams, and J. D. H. Strickland. 1966. Photooxidation of organic matter in seawater by UV radiation: analytical and other applications. Nature 211: 481–483.ADSGoogle Scholar
  5. Banoub, N. W., and P. J. leB. Williams. 1973. Seasonal changes in the organic forms of carbon, nitrogen and phosphorus in sea water at E in the English Channel during 1968. J. Mar. Biol. Assoc. UK 53: 697–703.Google Scholar
  6. Barvenik, F. W., and S. C. Malloy. 1979. Kinetic patterns of microbial amino acid uptake and mineralization in marine waters. Estuarine Coastal Mar. Sei. 8: 241–250.Google Scholar
  7. Bianchi, A. J. M. 1980. Distribution quantitative et qualitative des populations bacteriennes a l’interface eau-sediment. In “Biogeochimie de la matiere organique a 1’interface eau-sediment marin” Colloques Internationaux du CNRS, No. 293. Paris.Google Scholar
  8. Billen, G. 1975. Nitrification in the Scheldt estuary (Belgium and the Netherlands). Estuarine Coastal Mar. Sei. 3: 79–89.Google Scholar
  9. Billen, G. 1976. A method for evaluating nitrifying activity in sediments by dark 14C-bicarbonate incorporation. Water Res. 10: 51–57.ADSGoogle Scholar
  10. Billen, G. 1978. A budget of nitrogen recycling in North Sea sediments off the Belgian coast. Estuarine Coastal Mar. Sei. 11: 279–290.Google Scholar
  11. Billen, G., C. Joiris, J. Wijnant, and G. Gillain. 1980. Concentration and microbiological utilization of small organic molecules in the Scheldt estuary, the Belgian coastal zone of the North Sea and the English Channel. Estuarine Coastal Mar. Sei. 11: 279–294.Google Scholar
  12. Brown, K. D. 1971. Maintenance and exchange of the aromatic amino acid pool in E. coli. J. Bacteriol. 106: 70–81.Google Scholar
  13. Brown, C. M., D. S. Mac-DonaId-Brown, and S. O. Stanley. 1972. Inorganic nitrogen metabolism in marine bacteria: nitrogen assimilation in some marine Pseudomonas. J. Mar. Biol. Assoc. UK 52: 793–804.Google Scholar
  14. Butler, E. I., S. Knox, and M. I. Liddicoat. 1979. The relationship between inorganic and organic nutrients in sea water. J. Mar. Biol. Assoc. UK 59: 239–250.Google Scholar
  15. Carlucci, A. F., and J. D. H. Strickland. 1968. The isolation, purification and some kinetics studies of marine nitrifying bacteria. J. Exp. Mar. Biol. Ecol 2: 156–166.Google Scholar
  16. Carpenter, E. J., C. C. Remsen, and S. W. Watson. 1972. Utilization of urea by some marine phytoplankters. Limnol. Oceanogr. 17: 165–169.Google Scholar
  17. Christensen, D., and T. H. Blackburn. 1980. Turnover of tracer (14C, 3H labelled) alanine in inshore marine sediments. Mar. Biol. 58: 97–103.Google Scholar
  18. Christison, S., and S. M. Martin. 1971. Isolation and preliminary characterization of an extracellular protease of Cytophaga sp. Can. J. Microbiol. 17: 1207–1216.Google Scholar
  19. Conway, H. L. 1977. Interactions of inorganic nitrogen in the uptake and assimilation of marine phytoplankton. Mar. Biol. 39: 221–232.Google Scholar
  20. Corner, E. D. S., and B. S. Newell. 1967. On the nutrition and metabolism of zooplankton. IV. The forms of nitrogen excreted by Calanus. J. Mar. Biol. Assoc. UK 47: 113–120.Google Scholar
  21. Corner, E. D. S., C. B. Cowey, and S. M. Marshall. 1965. On the nutrition and metabolism of zooplankton. III. Nitrogen excretion by Calanus. J. Mar. Biol. Assoc. UK 47: 113–120.Google Scholar
  22. Crawford, C. C., J. E. Robbie, and K. L. Webb. 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–553.Google Scholar
  23. Dawson, R., and K. Gocke. 1978. Heterotrophic activity in comparison to the free amino acid concentrations in Baltic Sea water samples. Oceanol. Acta 1: 45–54.Google Scholar
  24. Degens, E. T. 1970. Molecular nature of nitrogenous compounds in sea water and recent marine sediments, pp. 77–106. In: D. W. Hood [ed.]. Organic Matter in Natural Waters. University of Alaska, Publ. No. 1.Google Scholar
  25. Derenbach, J. B., and P. J. leB. Williams. 1974. Autotrophic and bacterial production. Fractionation of plankton populations by differential filtration of samples from the English Channel. Mar. Biol. 25: 263–269.Google Scholar
  26. Dubois, E., and M. Grenson. 1979. Methylamine/ammonia uptake systems in Saccharomyces cerevisiae; multiplicity and regulation. Mol. Gen. Genet. 175: 67–76.Google Scholar
  27. Dugdale, R. C., and J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.Google Scholar
  28. Eppley, R. W., E. H. Renger, E. L. Venrick, and M. M. Mullin. 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean. Limnol. Oceanogr. 18: 534–551.Google Scholar
  29. Eppley, R. W., J. N. Rogers, and J. J. McCarthy. 1969. Half-satura- tion constant for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912–920.Google Scholar
  30. Eppley, R. W., and L. Solorzano. 1969. Nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205.Google Scholar
  31. Eppley, R. W., and B. J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680.ADSGoogle Scholar
  32. Falkowski, P. G. 1975. Nitrate uptake in marine phytoplankton: comparison of half-saturation constants from seven species. Limnol. Oceanogr. 20: 412–417.Google Scholar
  33. Falkowski, P. G., and R. B. Rivkin. 1977. The role of glutamine synthetase in the incorporation of ammonium in Skeletonema costatum. J. Phycol. 12: 448–450.Google Scholar
  34. Fein, J. E., and R. A. McLeod. 1975. Characterization of neutral amino acid transport in a marine Pseudomonas. J. Bacteriol. 124: 1170–1190.Google Scholar
  35. Fenchel, T. 1980. Suspension feeding in ciliated protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.Google Scholar
  36. Fraga, F. 1966. Distribution of particulate and dissolved nitrogen in the Western Indian Ocean. Deep-Sea Res. 13: 413–426.Google Scholar
  37. Gits, J., and M. Grenson. 1967. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. III. Evidence for a specific methionine transporting system. Biochim. Biophys. Acta 135: 507–516.Google Scholar
  38. Glenn, A. R. 1976. Production of extracellular proteins by bacteria. Ann. Rev. Microbiol. 30: 41–62.Google Scholar
  39. Golterman, H. L. 1972. The role of phytoplankton in detritus formation. Mem. 1st. Ital. Idrobiol. 29(suppl): 89–103.Google Scholar
  40. Grenson, M. 1966. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine transporting system. Biochim. Biophys. Acta l27: 339–346.Google Scholar
  41. Grenson, M., M. Mousset, J. M. Wiame and J. Bechet. 1966. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine transporting system. Biochim. Biophys. Acta 127: 325–338.Google Scholar
  42. Grenson, M., C. Hov, and M. Crabeel. 1970. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidences for a general amino acid permease. J. Bacteriol. 103: 770–777.Google Scholar
  43. Gundersen, K., and C. W. Mountain. 1973. Oxygen utilization and pH change in the ocean resulting from biological nitrate formation. Deep-Sea Res. 20: 1083–1091.Google Scholar
  44. Guardiola, J., M. Defelice, T. K. Lopotowski, and M. Iacarino. 1974. Multiplicity of isoleucine, leucine and valine transport systems in E. coli; K12. J Bacteriol. 117: 382–392.Google Scholar
  45. Hagel, P., and J. W. A. Van Rijn Van Alkemade. 1973. Eutrophication of the North Sea. International Council for the Exploration of the Sea. CM 1973/L: 22. Plankton Committee.Google Scholar
  46. Kama, T., and N. Handa. 1980. Molecular weight distribution and characterization of dissolved organic matter from lake waters. Arch. Hydrobiol. 90: 106–120.Google Scholar
  47. Hamilton, R. D., and J. E. Preslan. Observations on heterotrophic activity in the eastern tropical Pacific. Limnol. Oceanogr. 15: 395–401.Google Scholar
  48. Harrison, W. G. 1978. Experimental measurements of nitrogen remineralization in coastal waters. Limnol. Oceanogr. 23: 684–694.Google Scholar
  49. Harvey, H. W. 1945. The Chemistry and Biology of Sea Water. Cambridge Univ. Press, Cambridge.Google Scholar
  50. Hellebust, J. A. 1965. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206.Google Scholar
  51. Hellebust, J. A. 1970. The uptake and utilization of organic substances by marine phytoplanktoners, pp. 225–256. In: D. W. Hood [ed.]. Organic Matter in Natural Waters. Institute of Marine Science Occasional Publication No. 1.Google Scholar
  52. Hellebust, J. A. 1974. Extracellular products, pp. 838–863. In: W. D. P. Stewart [ed.]. Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford.Google Scholar
  53. Henricksen, K. 1980. Measurement of in situ rates of nitrification in sediments. Microb. Ecol. 6: 329–337.Google Scholar
  54. Hobbie, J. E., C. C. Crawford, and K. L. Webb. 1968. Amino acid flux in an estuary. Science (NY) 159: 1463–1464.ADSGoogle Scholar
  55. Hollibaugh, J. T. 1978. Nitrogen regeneration during the degradation of several amino acids by plankton communities collected near Halifax, Nova Scotia, Canada. Mar. Biol. 45: 191–201.Google Scholar
  56. Hollibaugh, J. T. 1979. Metabolic adaptation in natural bacterial populations supplemented with selected amino acids. Estuarine Coastal Mar. Sei. 9: 215–230.Google Scholar
  57. Hollibaugh, J. T., A. B. Carruthers, J. A. Fuhrman, and F. Azam. 1980. Cycling of organic nitrogen in marine plankton communities studied in enclosed water column. Mar. Biol. 59: 15–21.Google Scholar
  58. Holm-Hansen, O., J. D. H. Strickland, and P. M. Williams. 1966. A detailed analysis of biologicall important substances in a profile off Southern California. Limnol. Oceanogr. 11: 548–569.Google Scholar
  59. Iturriaga, R., and H. G. Hoppe. 1977. Observations of heterotrophic activities on photoassimilated organic matter. Mar. Biol. 40: 101–108.Google Scholar
  60. Jannasch, H. W. 1968. Growth characteristics of heterotrophic bacteria in sea water. J. Bacterid. 95: 722–723.Google Scholar
  61. Jassby, A. D., and C. R. Goldman. 1974. Loss rates from a lake phytoplankton community. Limnol. Oceanogr. 19: 618–627.Google Scholar
  62. Jawed, M. 1969. Body nitrogen and nitrogenous excretion in Neomysis rayii (Murdoch) and Euphansia pacifica (Hansen). Limnol. Oceanogr. 14: 748–754.Google Scholar
  63. Jawed, M. 1973. Ammonia excretion by zooplankton and its significance to primary productivity during summer. Mar. Biol. 23: 115–120.Google Scholar
  64. Johannes, R. E. 1968. Nutrient regeneration in lakes and oceans. Adv. Microbiol. Sea 1: 203–212.Google Scholar
  65. Johannes, R. E., and K. L. Webb. 1965. Release of dissolved amino acids by marine zooplankton. Science 150: 76–77.ADSGoogle Scholar
  66. Joiris, C. 1977. On the role of heterotrophic bacteria in marine ecosystems: some problems. Helgol. Wiss. Meeresunters. 30: 611–621.Google Scholar
  67. Joiris, C., G. Billen, C. Lancelot, M. H. Daro, J. P. Mommaerts, J. H. Hecq, A. Bertels, M. Bossicart, and J. Nijs. 1982. A budget of carbon cycling in the Belgian coastal zone: relative roles of zooplankton, bacterioplankton and benthos in the utilization of primary production. Neth. J. Sea Res. 16: 260–275.Google Scholar
  68. Jones, K., and W. D. P. Stewart. 1969. Nitrogen turnover in marine and brackish habitats. II. The production of extracellular N by Colothrix scopulorum. J. Mar. Biol. Assoc. UK 49: 475.Google Scholar
  69. Juttner, F., and T. Matuschek. 1978. The release of low molecular weight compounds by the phytoplankton in an eutrophic lake. Water Res. 12: 251–255.Google Scholar
  70. Kasper, H. F., and K. Wuhrmann. 1978. Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl. Environ. Microbiol. 36: 1–7.Google Scholar
  71. Kay, W. W., and A. F. Gronlund. 1969. Proline transport by Pseudomonas aeruginosa. Biochim. Biophys. Acta 193: 444–445.Google Scholar
  72. Kay, W. W., and A. F. Gronlund. 1969. Amino acid transport in Pseudomonas aeruginosa. J. Bacteriol. 97: 273–281.Google Scholar
  73. Kay, W. W., and A. F. Gronlund. 1971. Transport of aromatic amino acids by Pseudomonas aeruginosa. J. Bacteriol. 105: 1039–1046.Google Scholar
  74. Khaylov, K. M., and Z. Z. Finenko. 1970. Organic macromolecular compounds dissolved in sea-water and their inclusion into food-chains, pp. 6–18. In: J. H. Steele [ed.], Marine Food Chains. Oliver and Boyd, Edinburgh.Google Scholar
  75. Kim, J., and C. E. Zobell. 1974. Occurence and activities of cell-free enzymes in oceanic environments, pp. 368–385. In: R. R. Colwell and R. Y. Morita [eds.]. Effects of the Ocean Environment on Microbial Activity. University Park Press, Baltimore.Google Scholar
  76. Knowles, G., A. L. Downing, and M. J. Barrett. 1965. Determination of kinetics constants for nitrifying bacteria in mixed culture with the aid of a computer. J. Gen. Microbiol. 38: 263–278.Google Scholar
  77. Lancelot, C. 1979. Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics. Mar. Ecol. Prog. Ser. 1: 179–186.Google Scholar
  78. Lancelot, C. 1982. Etude ecophysiologique du phytoplancton de lazone cotière beige. Thesis, University of Brussels, Faculty of Science.Google Scholar
  79. Larsson, U., and A. Hagström. 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.Google Scholar
  80. Lee, C., and J. L. Bada. 1975. Amino acids in Equatorial Pacific Ocean water. Earth Planet. Sei. Letts. 26: 61–68.ADSGoogle Scholar
  81. Lee, C. L., and J. L. Bada. 1977. Dissolved amino acids in the Equatorial Pacific, the Sargasso Sea and Biscayne Bay. Limnol. Oceanogr. 22: 502–510.Google Scholar
  82. Lewin, J., and J. A. Hellebust,. 1975. Heterotrophic nutrition of the marine pennate diatom Navicula pavillardi. Can. J. Microbiol. 21: 1335–1342.Google Scholar
  83. Liebezeit, G., M Bolter, I. F. Brown and R. Dawson. 1980. Dissolved free amino acids and carbohydrates at pycnocline boundaries in the Sargasso Sea and related microbial activity. Oceanol. Acta 3: 357–362.Google Scholar
  84. Liu, M. S., and J. A. Hellebust. 1974. Uptake of amino acids by the marine centric diatom Cyclotella cryptica. Can. J. Microbiol. 20: 1109–1118.Google Scholar
  85. Martin, Y. P. 1980. Succession ecologique de communautés bactéri- ennes au cours de 1’evolution d’un ecosysteme phytoplanktonique marin experimental. Oceanol. Acta 3: 293–300.Google Scholar
  86. Martin, Y. P., and M. Bianchi. 1980. Structure, diversity, and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton. Microb. Ecol. 5: 265–279.Google Scholar
  87. Mayzaud, P., and J. L. M. Martin. 1975. Some aspects of the biochemical and mineral composition of marine plankton. J. Exp. Mar. Biol. Ecol. 17: 297–310.Google Scholar
  88. Meybeck, M. 1982. Nutrient (C,N,P) transport by world rivers. Am. J. Sei. 282: 401–450.Google Scholar
  89. McCarthy, J. J. 1972. The uptake of urea by natural populations of marine phytoplankton. Limnol. Oceanogr. 17: 738–745.Google Scholar
  90. Mclssaac, J. J., and R. C. Dugdale. 1969. The kinetics of nitrate and ammonium uptake by natural populations of marine phytoplankton. Deep-Sea Res. 16: 45–57.Google Scholar
  91. Miflin, B. J., and P. J. Lea. 1977. Amino acid metabolism. Ann. Rev. Plant Physiol. 28: 299–329.Google Scholar
  92. Mitamura, O., and Y. Saijo. 1975. Decomposition of urea associated with photosynthesis of phytoplankton in coastal waters. Mar. Biol. 30: 67–72.Google Scholar
  93. Morris, I. 1974. Nitrogen assimilation and protein synthesis, pp. 583–609. In: W. D. P. Stewart [ed.]. Algal Physiology and Biochemistry. University of California Press.Google Scholar
  94. Nalewajko, C., T. G. Dunstall, and H. Shear. 1976. Kinetics of extracellular release in axenic algae and in mixed algal- bacterial cultures: significance in estimation of total (gross) phytoplankton excretion rates. J. Phycol. 12: 1–5.Google Scholar
  95. Nihoul, J. C. J., and C. Boelen [eds.]. 1976. Niveaux de pollution du réseau hydrographique et de la zone cotière beiges. Recueil des donnees. Tome C: Yser et c8te beige. Projet Mer, rapport final. Ministère de la politique Scientifique. Bruxelles.Google Scholar
  96. North, B. B. 1975. Primary amines in California coastal waters: utilization by phytoplankton. Limnol. Oceanogr. 20: 20–27.Google Scholar
  97. North, B. B., and G. S. Stephens. 1967. Uptake and assimilation of amino acids by Platymonas. Biol. Bull 133: 391–400.Google Scholar
  98. Ogura, N. 1974. Molecular weight fractionation of dissolved organic matter in coastal seawater by ultrafiltration. Mar. Biol. 24: 305–312.Google Scholar
  99. Otsuki, A., and T. Hanya. 1972. Production of dissolved organic matter from dead green algae cells. I. Aerobic microbial decomposition. Limnol. Oceanogr. 17: 248–264.Google Scholar
  100. Paasche, E., and S. Kristiansen. 1982. Nitrogen nutrition of the phytoplankton in the Oslofjord. Estuarine Coastal Shelf Sei. 14: 237–249.ADSGoogle Scholar
  101. Painter, H. A. 1970. A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res. 4: 393–450.Google Scholar
  102. Pichot, G. 1980. Simulation du cycle de 1’azote ä traversl’écosystème pélagique de la Baie Sud de la Mer du Nord. Thesis, Université de Liège, Faculté des Sciences.Google Scholar
  103. Piperno, J. R., and D. L. Oxender. 1968. Amino acid transport systems in E. coli K-9. J. Biol. Chem. 243: 5914–5920.Google Scholar
  104. Pillai, T. N. V., and Gauguly, A. K. 1970. Nucleic acids in the dissolved constituents of sea water. Curr. Sei. 39: 501–504.Google Scholar
  105. Pocklington, R. 1971. Free amino acids dissolved in North Atlantic Ocean waters. Nature 230: 374.ADSGoogle Scholar
  106. Pollock, M. R. 1962. Exoenzymes, pp. 121–178. In: I. C. Gunsalus and R. Y. Stanier [eds.]. The Bacteria, Vol. IV. Academic Press.Google Scholar
  107. Prochazkova, L. P., P. Blazka, and M. Kralova. 1970. Chemical changes involving nitrogen metabolism in water and particulate matter during primary production experiments. Limnol. Oceanogr. 15: 797–807.Google Scholar
  108. Rahmanian, M., D. R. Claus, and D. L. Oxender. 1973. Multiplicity of leucine transport systems in E. coli Bacteriol. 116: 1258–1266.Google Scholar
  109. Reichardt, W. J., J. Overbeck, and L. Steubing. 1967. Free dissolved enzymes in lake water. Nature 216: 1345–1347.ADSGoogle Scholar
  110. Reisner, G. S., R. K. Gering, and J. F. Thompson. 1960. The metabolism of nitrate and ammonia by Chlorella. Plant Physiol. 35: 48–52.Google Scholar
  111. Remsen, C. C. 1971. The distribution of urea in coastal and oceanic waters. Limnol. Oceanogr. 16: 732–740.Google Scholar
  112. Remsen, C. C., E. J. Carpenter, and B. W. Schroeder. 1972. Competition for urea among estuarine microorganisms. Ecology 53: 921–926.Google Scholar
  113. Riley, J. P., and D. A. Seagar. 1970. The seasonal variations of the free and combined dissolved amino acids in the Irish Sea. J. Mar. Biol. Assoc. UK 50: 713–720.Google Scholar
  114. Rittenberg, S. C. 1963. Marine bacteriology and the problem of mineralization, pp. 48–60. In: C. H. Oppenheimer [ed.]. Symposium on Marine Microbiology, Thomas, Springfield.Google Scholar
  115. Rogers, H. J. 1961. The dissimilation of high molecular weight organic substances, pp. 261–318. In: I. C. Gunsalus and R. Y. Stanier [eds.]. The Bacteria, Vol. II. Academic Press, New York.Google Scholar
  116. Roon, R. T., H. L. Even, P. Dunlop and F. L. Larimore. 1975. Methylamine and ammonia transport in Saccharomyces cerevisiae. J. Bacteriol. 122: 502–509.Google Scholar
  117. Roth, M. 1965. Fluorimetric assay of some peptidases, pp. 10–18. In: R. Ruyssen and E. L. Vandenriesche [eds.]. Enzymes in Clinical Chemistry. Elsevier, Amsterdam.Google Scholar
  118. Russel, J. B., and R. L. Baldwin. 1979. Comparison of substrate affinities among several rumen bacteria: a possible determinant of rumen bacterial competition. Appl. Environ. Microbiol. 37: 531–543.Google Scholar
  119. Schell, D. M. 1974. Uptake and regeneration of free amino acids in marine waters of Southeast Alaska. Limnol. Oceanogr. 19: 260–270.Google Scholar
  120. Seki, H., T. Nakai and H. Otoba. 1972. Regional differences on turnover rate of dissolved materials on the Pacific Ocean at summer of 1971. Arch. Hydrobiol. 71: 79–89.Google Scholar
  121. Seki, H., T. Nakai, and H. Otobe. 1974. Turnover rate of dissolved materials in the Philippine Sea at winter of 1973. Arch. Hydrobiol. 73: 238–244.Google Scholar
  122. Seki, H., K. S. Shortreed, and J. G. Stockner. 1980a. Turnover rate of dissolved organic materials in glacially-oligotrophic and dystrophic lakes in British Columbia, Canada. Arch. Hydrobiol. 90: 210–216.Google Scholar
  123. Seki, H., T. Terada, and S. Ichimura. 1980b. Steady state oscillation of uptake kinetics by microorganisms in mesotrophic and eutrophic water masses. Arch. Hydrobiol. 88: 219–231.Google Scholar
  124. Seki, H., Y. Yamaguchi, and S. Ichimura. 1975. Turnover rate of dissolved organic materials in a coastal region of Japan at summer stagnation period of 1974. Arch. Hydrobiol. 75: 297–305.Google Scholar
  125. Sharp, J. H. 1977. Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22: 381–399.MathSciNetGoogle Scholar
  126. Sieburth, J. McN., and A. Jensen. 1969. Studies on algal substances in the sea. II. The formation of gelbstoff by exudates of phaeophyta. J. Exp. Mar. Biol. Ecol. 3: 275–289.Google Scholar
  127. Siegel, A., and E. T. Degens. 1966. Concentration of dissolved amino acids from saline waters by liquid-exchange chromatography. Science 151: 1098–1101.ADSGoogle Scholar
  128. Somville, M. 1978. A method for the measurement of nitrification rates in water. Water Res. 12: 843–848.Google Scholar
  129. Somville, M. 1980. Etude ecophysiologique de I’activite bacterienne dans I’estuaire de I’Escaut. These, Universite Libre de Bruxelles, Faculté des Sciences,Google Scholar
  130. Somville, M., and G. Billen. 1983. A method for determining exo- proteolytic activity in natural waters. Limnol. Oceanogr. 28: 190–193.Google Scholar
  131. Stanley, P. M., and J. T. Stanley. 1977. Acetate uptake by aquatic bacterial communities measured by autoradiography and filterable radioactivity. Limnol. Oceanogr. 22: 26–37.Google Scholar
  132. Stewart, W. D. P. 1963. Liberation of extracellular nitrogen by two nitrogen fixing blue-green algae. Nature 200: 1020–1021.ADSGoogle Scholar
  133. Strayer, R. F., and J. M. Tiedje. 1978. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment. Appl. Environ. Microbiol. 36: 330–340.Google Scholar
  134. Tempest, D. W., J. L. Meers, and C. M. Brown. 1970. Synthesis of glutamate in Aerobacter aerogines by a hitherto unknown route. Biochem. J. 117: 405–407.Google Scholar
  135. Thomas, W. H., E. H. Reuger, and A. N. Dodson. 1971. Near surface organic nitrogen in the eastern tropical Pacific Ocean. Deep- Sea Res. 18: 65–67.Google Scholar
  136. Tuschall, J. R., and P. L. Brezonik. 1980. Characterization of organic nitrogen in natural waters: its molecular size, protein content and interaction with heavy metals. Limnol. Oceanogr. 25: 495–504.Google Scholar
  137. Vaccaro, R. F., and H. W. Jannasch. 1966. Variations in uptake kinetics for glucose by natural populations in sea water. Limnol. Oceanogr. 12: 540–542.Google Scholar
  138. Van Bennekom, A. J., W. W. C. Gieskes, and S. B. Tijssen. 1975. Eutrophication of Dutch coastal waters. Proc. R. Soc. Lond. B 189: 359–374.ADSGoogle Scholar
  139. Von Brand, T. H., H. W. Rakestraw, and C. E. Renn. 1937. The experimental decomposition and regeneration of nitrogeneous organic matter in sea water. Biol. Bull. 72: 165–175.Google Scholar
  140. Walker, D. J., and P. R. Monk. 1971. Fate of carbon passing through the glucose pool of rumen digests. Appl. Microbiol. 22: 741–747.Google Scholar
  141. Webb, K. L., and R. E. Johannes. 1969. Do marine crustaceans release dissolved amino acids? Comp. Biochem. Physiol. 29: 875–878.Google Scholar
  142. Wheeler, J. R. 1976. Fractionation by molecular weight of organic substances in Georgia coastal waters. Limnol. Oceanogr. 21: 846–852.Google Scholar
  143. Wheeler, P., B. North, M. Littler, and G. Stephens. 1977. Uptake of glycine by natural phytoplankton communities. Limnol. Oceanogr. 22: 900–910.Google Scholar
  144. Whitledge, T. E., and R. C. Dugdale. 1972. Creatine in sea water. Limnol. Oceanogr. 17: 309–314.Google Scholar
  145. Wiebe, W. J., and D. F. Smith. 1977. Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs. Mar. Biol. 42: 213–223.Google Scholar
  146. Williams, P. J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution and relationship between respiration and incorporation of growth substances. J. Mar. Biol. Assoc. UK 50: 859–870.Google Scholar
  147. Williams, P. J. leB. 1973. The validity of the application of simple kinetic analysis to heterogeneous microbial population. Limnol. Oceanogr. 18: 159–164.Google Scholar
  148. Williams, P. J. leB. 1975. Biological and chemical aspects of dissolved organic material in sea water, pp. 301–363. In: J. P. Riley and G. Skirrow [eds.]. Chemical Oceanography. Academic Press, New York.Google Scholar
  149. Williams, P. J. leB., T. Berman, and O. Holm-Hansen. 1976. Amino acid uptake and respiration by marine heterotrophis. Mar. Biol. 35: 41–47.Google Scholar
  150. Williams, P. J. leB., and R. W. Gray. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. II. Observations on the responses of heterotrophic marine populations to abrupt increases in amino acid concentration. J. Mar. Biol. Assoc. UK 50: 871–881.Google Scholar
  151. Williams, P. M. 1971. The distribution and cycling of organic matter in the ocean, pp. 145–163. In: S. D. Faust and J. V. Hunter [eds.]. Organic Compounds in Aquatic Environments. Marcel Dekker, New York.Google Scholar
  152. Wollast, R., and G. Billen. 1981. The fate of terrestrial organic carbon in the coastal area, pp. 331–359. In: Flux of Organic Carbon by Rivers to the Oceans, NRC. Carbon dioxide effects research and assessment program. Report of a Workshop, Woods Hole, Massachusetts, Sept. 21–25, 1980. U. S. Dept. of Energy. CONF-8009140.Google Scholar
  153. Wright, R. T. 1974. Mineralization of organic solutes by heterotrophic bacteria, pp. 546–565. In: R. R. Colwell and R. Y. Morita [eds.], Effects of the Ocean Environment on Microbial Activities. University Park Press, Baltimore.Google Scholar
  154. Wright, R. T., and J. E. Hobbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.Google Scholar
  155. Wuhrmann, K. 1968. Adaptationen bei Gesellschaften von Mikroorganismen in Wasser. Bibl. Microbiol. 4: 52–64.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gilles Billen
    • 1
  1. 1.Laboratoire d’OceanographieUniversity of BrusselsBelgiumGermany

Personalised recommendations