Skip to main content

Nutrient Interactions and Microbes

  • Chapter
Book cover Heterotrophic Activity in the Sea

Part of the book series: NATO Conference Series ((MARS,volume 15))

  • 175 Accesses

Abstract

This paper is concerned with microbial processes that alter the composition of seawater; the alterations represent modifications of the environment that in turn can be expected to influence microbial activity. Such processes can be examined with a view to many of the chemical elements, which may be involved because they are essential to the growth and metabolism of plants and animals, which may be concentrated in or on the bodies of organisms either biochemically or physico-chemically, or which may have special stimulating or toxic effects. As suggested by the organizing committee, most of the presentation will deal with the elements considered in the “Redfield ratios”, carbon, nitrogen, phosphorus, and dissolved oxygen. The discussion will, however, be extended to the consideration of oxygen-deficient and anoxic waters, in which the role of sulfur compounds becomes important, and some speculation as to the possible role of phosphate as a free energy source will be included. It will be important to review the assumptions implicit in the Redfield ratios and the departures in nature from the ratios and assumptions. The departures may sometimes be more interesting than the ratios themselves, because they may indicate significant peculiarities in the populations or in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins, W. R. G. 1923. The phosphate content of sea water in relationship to the growth of the algal plankton. J. Mar. Biol. Assoc. UK 13: 119–150.

    Article  Google Scholar 

  • Atkins, W. R. G. 1932. Nitrate in sea water and its estimation by means of diphenylbenzidene. J. Mar. Biol. Assoc. UK 18: 167–192.

    Article  Google Scholar 

  • Atkinson, L. P., and F. A. Richards. 1967. The occurrence and distribution of methane in the marine environment. Deep-Sea Res. 14: 673–684.

    Google Scholar 

  • Barlow, J. P. 1965. Formal discussions of chemical observations in some anoxic, sulfide-bearing basins and fjords, pp. 233–234. In: Proc. Int. Water Pollution Conf., 2nd, Tokyo. Pergamon Press.

    Google Scholar 

  • Barnes, C. A., and E. E. Collias. 1958. Some considerations of oxygen utilization rates in Puget Sound. J. Mar. Res. 17: 68–80.

    Google Scholar 

  • Brandhorst, W. 1959. Nitrification and denitrification in the eastern tropical Pacific Ocean. J. Cons. Cons. Perm. Int. Explor. Mer 25: 3–20.

    Google Scholar 

  • Brenneke, W. 1909. Ozeanographie: Forschungsreise S. M. S. Planet 1906/7, 3. K. Siegismund, Berlin.

    Google Scholar 

  • Brewer, P. G., and J. W. Murray. 1973. Carbon, nitrogen and phosphorus in the Black Sea. Deep-Sea Res. 20: 803–818.

    Google Scholar 

  • Carpenter, W. L. 1874. Summary of the results of the examination of samples of sea-water taken at the surface and at various depths, pp. 502–511. In: C. W. Thompson [ed.]. The Depths of the Sea. Macmillan, London.

    Google Scholar 

  • Childress, J. J. 1968. Oxygen minimum layer vertical distribution and respiration of the mysid Gnathophausia ingens. Science 160: 1242–1243.

    Article  ADS  Google Scholar 

  • Cline, J. D., and F. A. Richards. 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH. Environ. Sei. Technol. 3: 838–843.

    Article  Google Scholar 

  • Cline, J. D., and F. A. Richards. 1972. Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific Ocean. Limnol. Oceanogr. 17: 885–900.

    Article  Google Scholar 

  • Codispoti, L. A., and F. A. Richards. 1976. An analysis of the horizontal regime of denitrification in the eastern tropical North Pacific. Limnol. Oceanogr. 21: 379–388.

    Article  Google Scholar 

  • Craig, H. 1969. Abyssal carbon and radiocarbon in the Pacific. J. Geophys. Res. 74: 5491–5506.

    Article  ADS  Google Scholar 

  • Edmond, J. M., E. D. Boyle, B. Grant and R. F. Stallard. 1981. The chemical mass balance in the Amazon plume. I. The nutrients. Deep-Sea Res. 28: 1339–1374.

    Article  Google Scholar 

  • Emmet, R. T. 1969. Spectrophotometric determination of urea and ammonia in natural waters with hypochlorite and phenol. Anal. Chem. 41: 1648–1652.

    Article  Google Scholar 

  • Farhbach, E., C. Brockmann, N. Lostaunau, and W. Urquizo. 1981. The northern Peruvian upwelling system during the ESACAN experiment, pp. 134–145. In: F. A. Richards [ed.]. Coastal Upwelling. American Geophysical Union,

    Google Scholar 

  • Fiadeiro, M., and J. D. H. Strickland. 1968. Nitrate reduction and the occurrence of a deep nitrite maximum in the ocean off the west coast of South America. J. Mar. Res. 26: 187–201.

    Google Scholar 

  • Fleming, R. H. 1940. The composition of plankton and units for reporting populations and reproduction. Proceedings of the 6th Pacific Science Congress, California, 1939 3: 535–540.

    Google Scholar 

  • Friederich, G. E., and L. A. Codispoti. 1981. The effects of mixing and regeneration on the nutrient content of upwelling waters off Peru, pp. 221–227. In: F. A. Richards [ed.], Coastal Upwelling. American Geophysical Union.

    Google Scholar 

  • Gilson, H. C. 1937. The nitrogen cycle. John Murray Expedition, 1933–34. Sei. Rep. 2: 21–81.

    Google Scholar 

  • Harvey, H. W. 1926. Nitrate in the sea. J. Mar. Biol. Assoc. UK 14: 17–88.

    Google Scholar 

  • Harvey, H. W. 1929. Methods of estimating phosphates and nitrates in sea water. Rapports et proces verbaux. Cons. Int. Perm. Explor. Mer 53: 68.

    Google Scholar 

  • Harvey, H. W. 1955. The Chemistry and Fertility of Sea Waters. Cambridge University Press.

    Google Scholar 

  • Hobbie, J. E., O. Holm-Hansen, T. T. Packard, L. R. Pomeroy, R. W. Sheldon, J. P. Thomas, and W. J. Wiehe. 1972. A study of the distributions and activity of microorganisms in ocean water. Limnol. Oceanogr. 17: 544–555.

    Article  Google Scholar 

  • Honjo, S., J. F. Connell, and P. L. Sachs. 1980. Deep-ocean sediment trap; design and function of PARFLUX Mark II. Deep-Sea Res. 27: 745–754.

    Article  Google Scholar 

  • Honjo, S., S. J. Manganini, and J. J. Cole. 1982. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res. 29: 609–625.

    Article  Google Scholar 

  • Ketchum, B. H. 1939a. The absorption of phosphate and nitrate by illuminated cultures of Nitschia closterium. Am. J. Bot. 26: 399–407.

    Article  Google Scholar 

  • Ketchum, B. H. 1939b. The development and restoration of deficiencies in the phosphorus and nitrogen composition of unicellular plants. J. Cell. Comp. Physiol. 13: 373–315.

    Article  Google Scholar 

  • Ketchum, B. H. 1947. The biochemical relations between marine organisms and their environment. Ecol. Monogr. 17: 309–315.

    Article  Google Scholar 

  • Krogh, A. 1934. A method for the determination of ammonia in water and air. Biol. Bull. 67: 126–131.

    Article  Google Scholar 

  • Kroopnick, P. 1974. The dissolved 02-C02-C system in the eastern equatorial Pacific. Deep-Sea Res. 21: 211–277.

    Google Scholar 

  • Lyman, J. 1956. Buffer mechanism of sea water. Ph.D. thesis. University of California, Los Angeles.

    Google Scholar 

  • McCarthy, J. J. 1970. A urease method for urea in seawater. Limnol. Oceanogr. 15: 309–312.

    Article  Google Scholar 

  • Martens, C. S., and R. A. Berner. 1974. Methane production in the interstitial waters of sulfate-depleted sediments. Science 185: 1167–1169.

    Article  ADS  Google Scholar 

  • Menzel, D. W., and J. H. Ryther. 1960. The annual cycle of primary production in the Sargasso Sea off Bermuda. Deep-Sea Res. 6: 351–367.

    Google Scholar 

  • Morris, A. W., and J. P. Reily. 1963. The determination of nitrate in seawater. Anal. Chim. Acta 29: 272–279.

    Article  Google Scholar 

  • Packard, T. T. 1969. The estimation of the oxygen utilization rate in sea water from the activity of the respiratory electron transport system in plankton. Ph.D. thesis, University of Washington, Seattle.

    Google Scholar 

  • Packard, T. T. 1971. The measurement of respiratory electron- transport activity in marine plankton. J. Mar. Res. 29i 235–244.

    Google Scholar 

  • Packard, T. T., R. C. Dugdale, J. J. Goering and R. T. Barber. 1978. Nitrate reductase activity in the subsurface waters of the Peru Current. J. Mar. Res. 36: 59–76.

    Google Scholar 

  • Redfield, A. C. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton, pp. 176–192. James Johnstone Memorial Volume. University of Liverpool.

    Google Scholar 

  • Redfield, A. C. 1942. The processes determining the concentration of oxygen, phosphate and other organic derivatives within the depths of the Atlantic Ocean. Papers in Physical Oceanography and Meteorology 9(2), 22 pp.

    Google Scholar 

  • Redfield, A. C. 1948. The exchange of oxygen across the sea surface. J. Mar. Res. 7: 347–361.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richards. 1963. The influence of organisms on the composition of sea-water, pp. 26–77. In: M. N. Hill [ed.]. The Sea, Chapter 2, Vol. 2. Interscience Publishers.

    Google Scholar 

  • Richards, F. A. 1957. Oxygen in the ocean. in: Treatise on Marine Ecology and Paleoecology. Geol. Soc. Am. Mem. 67 (1): 185–238.

    MathSciNet  Google Scholar 

  • Richards, F. A. 1975. The Cariaco Basin (Trench). Oceanogr. Mar. Biol. Ann. Rev. 13: 10–67.

    Google Scholar 

  • Richards, F. A., and W. W. Broenkow. 1971. Chemical changes, including nitrate reduction, in Darwin Bay, Galapagos Archipelago, over a 2-month period, 1969. Limnol. Oceanogr. 16: 758–765.

    Article  Google Scholar 

  • Richards, F. A., J. J. Goering, L. A. Codispoti and R. C. Dugdale. 1973. Nitrogen fixation and denitrification in the ocean: biogeochemical budgets, pp. 12–27. In: E. Ingerson [ed.]. Proceedings of the International Symposium on Hydrogeochemistry and Biogeochemistry, Vol. 2, Biogeochemistry. The Clarke Co., Washington, D.C.

    Google Scholar 

  • Richards, F. A., and R. F. Vaccaro. 1955. The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep-Sea Res. 3: 214–228.

    Google Scholar 

  • Riley, J. P. 1953. The spectrophotometric determination of ammonia with particular reference to sea-water. Anal. Chim. Acta 9: 575–589.

    Article  Google Scholar 

  • Robinson, R. J., and T. G. Thompson. 1948. The determination of nitrites in sea water. J. Mar. Res. 7: 42–48.

    Google Scholar 

  • Skirrow, G. 1975. The dissolved gases - carbon dioxide, pp. 1–192. In: J. P. Riley and G. Skirrow [eds.]. Chemical Oceanography, 2nd Edition. Academic Press.

    Google Scholar 

  • von Brand, T., N. W. Rakestraw and C. E. Renn. 1937. The experimental decomposition and regeneration of nitrogenous organic matter in sea water. Biol. Bull. 72: 165–175.

    Article  Google Scholar 

  • von Brand, T., N. W. Rakestraw and C. E. Renn. 1939. Further experiments on the decomposition and regeneration of nitrogenous organic matter in sea water. Biol. Bull. 77: 285–296.

    Article  Google Scholar 

  • Ward, B. B., R. J. Olson and M. J. Perry. 1982. Microbialnitrification rates in the primary nitrite maximum off southern California. Deep-Sea Res. 29: 247–256.

    Article  Google Scholar 

  • Whitledge, T. E. 1981. Nitrogen recycling and biological populations in upwelling ecosystems, pp. 257–273. In: F. A. Richards [ed.]. Coastal Upwelling. American Geophysical Union.

    Google Scholar 

  • Whitledge, T. E., and R. C. Dugdale. 1972. Creatine in seawater. Limnol. Oceanogr. 17: 309–314.

    Article  Google Scholar 

  • Williams, P. M., W. H. Mathews and G. L. Pickard. 1961. A lake in British Columbia containing old sea-water. Nature 191: 830–832.

    Article  ADS  Google Scholar 

  • Winkler, L. W. 1888. Die Bestimmung des im Wasser gelösten Sauerstoffes. Ber. Dtsch. Chem. Ges. 21: 2843–2855.

    Article  Google Scholar 

  • Wood, E. D., F. A. J. Armstrong and F. A. Richards. 1967. Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. UK 47: 23–31.

    Article  Google Scholar 

  • Wooster, W. S., T. J. Chow and I. Barrett. 1965. Nitrite distribution in Peru Current waters. J. Mar. Res. 23: 210–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Richards, F.A. (1984). Nutrient Interactions and Microbes. In: Hobbie, J.E., Williams, P.J.l. (eds) Heterotrophic Activity in the Sea. NATO Conference Series, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9010-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9010-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9012-1

  • Online ISBN: 978-1-4684-9010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics